乏燃料运输容器木材减震器设计

兰天宝, 白旭娟, 冯天佑, 盛锋, 卢可可

兰天宝, 白旭娟, 冯天佑, 盛锋, 卢可可. 乏燃料运输容器木材减震器设计[J]. 原子能科学技术, 2024, 58(11): 2428-2436. DOI: 10.7538/yzk.2024.youxian.0075
引用本文: 兰天宝, 白旭娟, 冯天佑, 盛锋, 卢可可. 乏燃料运输容器木材减震器设计[J]. 原子能科学技术, 2024, 58(11): 2428-2436. DOI: 10.7538/yzk.2024.youxian.0075
LAN Tianbao, BAI Xujuan, FENG Tianyou, SHENG Feng, LU Keke. Design of Wood Impact Limiter for Spent Fuel Transportation Casks[J]. Atomic Energy Science and Technology, 2024, 58(11): 2428-2436. DOI: 10.7538/yzk.2024.youxian.0075
Citation: LAN Tianbao, BAI Xujuan, FENG Tianyou, SHENG Feng, LU Keke. Design of Wood Impact Limiter for Spent Fuel Transportation Casks[J]. Atomic Energy Science and Technology, 2024, 58(11): 2428-2436. DOI: 10.7538/yzk.2024.youxian.0075

乏燃料运输容器木材减震器设计

详细信息
    通讯作者:

    盛 锋

  • 中图分类号: TL99;TB485.1;O328

Design of Wood Impact Limiter for Spent Fuel Transportation Casks

  • 摘要:

    为解决木材作为乏燃料运输容器减震器填充材料时力学性能中的分散性和尺寸效应问题,本文开展了小尺寸木材压缩试验和足尺寸构件压缩试验;采用LS-DYNA有限元分析软件建立了试验构件模型,并对比了足尺寸构件模拟结果与压缩试验结果;基于小尺寸木材和足尺寸构件试验获得的泡桐木力学性能数据开展了运输容器跌落分析;通过运输容器原型样机的过重心角跌落测试验证减震器设计。计算和试验结果表明,在泡桐木的弹性和平台阶段,模拟结果与试验数据吻合较好,且基于小尺寸木材性能的仿真结果可以包络足尺寸构件试验结果。运输容器的自由跌落模拟结果表明,减震器结构设计合理。9 m过重心角跌落试验结果与仿真结果吻合,验证了选用的泡桐木本构模型合理准确。应用高斯分布衡量木材屈服平台应力数据能提高减震器的可靠性,该方法可以替代足尺寸构件试验,从而减少研发成本。

     

    Abstract:

    A fuel transport cask is a critical piece of equipment utilized for transporting radioactive substances. Its safety performance is directly linked to public safety and environmental protection. The spent fuel transport casks play a vital role in effectively preventing the leakage of radioactive substances and ensuring the safety of the transport process. The impact limiter in the spent fuel transport cask is a crucial component that effectively reduces vibration and shock during the transport process. It also protects the radioactive materials in the container from high acceleration loads. Researchers commonly use wood as a filler material for impact limiters to improve the damping effect of spent fuel transport casks. Wood, being a natural material, possesses good shock absorption properties. However, due to the dispersion of its mechanical properties and size effects, it requires thorough study and analysis. Therefore, in this study a small-scale compression test was initially conducted, and the Gaussian stress distribution of the yield platform of paulownia wood was obtained through the experiment to lay the foundation for subsequent research. Secondly, a full-scale compression test on wood components was conducted, and a test component model was established using LS-DYNA finite element analysis software. Through comparing and analyzing the test results, the simulation results were obtained. The results indicate that in the elastic and plastic stages, the simulation results are in good agreement with experimental data. It is observed that the compression-displacement results of the full-size can be approximated by the yield platform data of the small size with a 75% confidence interval. Finally, the design of the wooden impact limiter was analyzed, and a 9 m free drop simulation of the transport cask was conducted. Through simulation analysis, it is found that the design of the impact limiter structure is reasonable because it can effectively reduce the impact of the free drop. A drop test of the prototype from a height of 9 m above its centre of gravity was conducted. The test results are consistent with the simulation, further confirming the reasonableness and accuracy of the selected Constitutive model. Applying Gaussian distribution to measure the stress data of wood yield platform can improve the reliability of impact limiter, which can replace full-scale component testing and reduce research and development costs. This is beneficial for reducing research and development costs and enhancing the safety performance of transport casks. The research results are highly significant for enhancing the safety of radioactive materials during transportation.

     

  • 图  1   试验木材结构示意

    Figure  1.   Illustration of test wood sample

    图  2   泡桐木木材的应力-应变曲线

    Figure  2.   Stress-strain curve of paulowina wood

    图  3   泡桐木木材的不同方向应力-应变拟合曲线

    a——横纹径向;b——横纹弦向;c——顺纹方向

    Figure  3.   Stress-strain fitting curve for paulowina wood

    图  4   Palamidi等[13]获得的泡桐木动态特性曲线

    Figure  4.   Dynamic characteristic curves of paulowina wood obtained by Palamidi et al[13]

    图  5   足尺寸构件示意图

    Figure  5.   Schematic diagram of full-size components

    图  6   足尺寸构件失效形式

    a——构件准静态压缩中的变形;b——构件压缩完形貌;c——仿真构件压缩完形貌

    Figure  6.   Failure form of full-size components

    图  7   准静态压缩系统能量

    Figure  7.   System energy of quasi-static compression

    图  8   构件压缩力-位移曲线

    a——横纹构件;b——顺纹构件;c——45°方向构件

    Figure  8.   Compressive force-displacement curve of wood in stainless steel tank

    图  9   运输容器9 m角跌落示意

    a——运输容器9 m角跌落仿真模型;b——上减震器触地

    Figure  9.   Schematic for 9 m corner drop analysis of transport cask

    图  10   运输容器9 m角跌落过程中容器总能量、动能及应变能的时程

    Figure  10.   Time history of total energy, kinetic energy and internal energy of cask

    图  11   不同抗压强度下运输容器跌落时筒体刚体的加速度响应

    a——角跌落;b——垂直跌落;c——水平跌落

    Figure  11.   Rigid-body acceleration response of containers with different compressive strengths in corner drop

    图  12   加速度计测点布置示意图

    Figure  12.   Accelerometer measurement point arrangement

    图  13   容器跌落时上减震器变形仿真结果(a)与试验结果(b)的对比

    Figure  13.   Comparison of simulation results (a) with experimental results (b) of upper impact limiter deformation

    图  14   各测点加速度计算值与试验值对比

    Figure  14.   Comparison of calculated and experimental values of acceleration at each measuring point

    表  1   主要部件信息

    Table  1   Description of key components in cask

    部件单元类型单元数量材料
    容器本体实体单元143 5640Cr18Ni9
    填充木材实体单元107 856泡桐木
    减震器外壳壳单元36 7090Cr18Ni9
    吊篮壳单元70 6310Cr18Ni9
    螺栓实体单元86 1830Cr17Ni4Cu4Nb
    下载: 导出CSV
  • [1] HJ 1355—2024 压水堆乏燃料运输容器设计要求[S]. 北京: 生态环境部, 2024.
    [2] GB 11806—2019 放射性物品安全运输规程[S]. 北京: 生态环境部, 2009.
    [3] 孙谦, 庄大杰, 孙洪超, 等. 核燃料组件运输容器应用现状概述[J]. 包装工程, 2022, 43(13): 142-150.

    SUN Qian, ZHUANG Dajie, SUN Hongchao, et al. Overview of application status for nuclear fuel assembly transport package[J]. Packaging Engineering, 2022, 43(13): 142-150(in Chinese).

    [4] 邢攸冬, 杨思一, 安钰坤, 等. 核乏燃料运输容器减震器填充材料研究进展[J]. 包装工程, 2019, 40(21): 111-117.

    XING Youdong, YANG Siyi, AN Yukun, et al. Research progress in impact limiter filling materials for nuclear spent fuel transport casks[J]. Packaging Engineering, 2019, 40(21): 111-117(in Chinese).

    [5] GB/T 1939—2009 木材横纹抗压试验方法[S]. 北京: 全国木材标准化技术委员会, 2009
    [6] GB/T 1935—2009 木材顺纹抗压试验方法[S]. 北京: 全国木材标准化技术委员会, 2009
    [7] 兰天宝, 朱思琪, 刘轩. 某乏燃料运输容器减震器设计及验证[J]. 包装工程, 2023, 44(7): 294-300.

    LAN Tianbao, ZHU Siqi, LIU Xuan. Design and verification of shock absorber for a spent fuel cask[J]. Packaging Engineering, 2023, 44(7): 294-300(in Chinese).

    [8] 张利朋, 谢启芳, 吴亚杰, 等. 木材本构模型研究进展[J]. 建筑结构学报, 2023, 44(5): 286-304.

    ZHANG Lipeng, XIE Qifang, WU Yajie, et al. Research progress on constitutive model for wood[J]. Journal of Building Structures, 2023, 44(5): 286-304(in Chinese).

    [9]

    VALIPOUR H, KHORSANDNIA N, CREWS K, et al. A simple strategy for constitutive modelling of timber[J]. Construction and Building Materials, 2014, 53: 138-148. doi: 10.1016/j.conbuildmat.2013.11.100

    [10]

    LI P, GUO Y B, SHIM V P W. A constitutive model for transversely isotropic material with anisotropic hardening[J]. International Journal of Solids and Structures, 2018, 138: 40-49. doi: 10.1016/j.ijsolstr.2017.12.026

    [11]

    AIMENE Y E, NAIRN J A. Simulation of transverse wood compression using a large-deformation, hyperelastic–plastic material model[J]. Wood Science and Technology, 2015, 49(1): 21-39. doi: 10.1007/s00226-014-0676-6

    [12]

    LIU Q, SUBHASH G. A phenomenological constitutive model for foams under large deformations[J]. Polymer Engineering & Science, 2004, 44(3): 463-473.

    [13]

    PALAMIDI E, HARRIGAN J J. An investigation of balsa wood over a range of strain-rates and impact velocities[J]. Journal de Physique Ⅳ (Proceedings), 2006, 134: 225-230.

    [14] 谢若泽, 郭玲梅, 李尚昆, 等. 毛白杨静态压缩力学性能研究及吸能分析[J]. 装备环境工程, 2021, 18(5): 106-112.

    XIE Ruoze, GUO Lingmei, LI Shangkun, et al. Investigation of quasi-static compression mechanical properties of populus tomentosa[J]. Equipment Environmental Engineering, 2021, 18(5): 106-112(in Chinese).

    [15] 钟永, 武国芳, 任海青, 等. 基于正态随机样本确定结构用木质材料强度标准值的方法[J]. 建筑结构学报, 2018, 39(11): 129-138.

    ZHONG Yong, WU Guofang, REN Haiqing, et al. Determination method of characteristic strength for structural wood materials based on normal distribution and random sampling[J]. Journal of Building Structures, 2018, 39(11): 129-138(in Chinese).

    [16]

    LAN T, DONG J, SHENG F. Experimental and numerical investigation of scale model used in the development of a spent nuclear fuel transport cask[J]. Journal of Vibration and Control, 2024. doi: 10775463241237632.

    [17]

    HANKINSON R L. Investigation of crushing strength of spruce at varying angles of grain[J]. Air Service Information Circular, 1921, 3: 130.

图(14)  /  表(1)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  16
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-18
  • 修回日期:  2024-04-10
  • 网络出版日期:  2024-07-08
  • 刊出日期:  2024-11-19

目录

    /

    返回文章
    返回