模拟压水堆一回路环境下冷应变对321不锈钢高温电化学行为和应力腐蚀开裂行为的影响

Effect of Cold Work on High Temperature Electrochemical Performance and Stress Corrosion Cracking Behavior of 321 Stainless Steel in Simulated PWR First Circuit Environment

  • 摘要: 321不锈钢是常用的压水堆结构材料之一,在成型加工和服役期间易因各种因素发生冷应变,使其性能发生改变。本文在模拟压水堆一回路水化学环境中,测量了不同冷应变量321不锈钢的电化学阻抗谱,并用热应变样品作为对比;采用慢应变速率拉伸测试了冷应变试样应力腐蚀开裂性能。使用X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)对样品微观特征进行了分析。XRD分析表明,冷应变使基体发生了由奥氏体到马氏体的转变,而高温抑制了这一过程。随着应变程度的增大(至20%),电荷转移电阻增大,膜电阻随马氏体含量的升高而降低。裂纹萌生实验结果表明,马氏体优先发生氧化腐蚀,保护了奥氏体基体,抑制了应力腐蚀裂纹萌生。

     

    Abstract: 321 stainless steel (SS) is one kind of austenitic stainless steel, in which Ti is added as stabilizing element. Due to its excellent corrosion resistance and comprehensive mechanical properties under high temperature, 321SS is an important construction material in light water reactor (LWR). It is prone to cold work due to various factors in the whole cycle, which changes its working performance, especially corrosion resistance and stress corrosion cracking (SCC) property, while corrosion and SCC are main failure forms of 321SS in LWR. The mainstream view is that the transformation of grain boundary type, the increase of slip lines, the formation of voids and the phase change from austenite to martensite caused by cold work will increase the probability of failure. However, the dominant factors and main mechanisms are still controversial. The purpose of this study is to investigate the effect of cold work on corrosion and SCC of 321SS and preliminarily explain the mechanism. Samples with different work rate and martensite fraction were acquired through different extent of cold work and hot work. The as-received specimen was remarked as SA, the cold worked specimen was remarked as CW20 and the hot worked HW20. The corrosion behavior was studied by high temperature electrochemical tests. The electrochemical impedance spectroscopy (EIS) of SA and CW20 was measured in a simulated pressurized water reactor (PWR) first circuit environment, and HW20 was used as a comparison. The SCC performance of specimens was tested by stress corrosion test under slow strain rate tensile (SSRT) loading mode. After tensile tests, micro cracks initiated on the surface were counted and the average crack length was calculated to evaluate SCC sensitivity. The microscopic characteristics of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). XRD analysis shows that barely no martensite exists in SA, the martensite volume fraction in CW20 is 22% and 11% in HW20. In EIS tests, the charge transfer resistance rises both in CW20 and HW20 compared with SA. SA has the highest film resistance, HW20 the second, and CW20 has the lowest. After SCC test, the most cracks initiated on the surface of HW, and the least on SA. The conclusions can be drawn as following: The cold work causes the transformation from austenite to martensite in the matrix, and the high temperature inhibits this process. With the increase of strain degree, the charge transfer resistance increases, and the film resistance decreases with the increase of martensite content. A Cr-depleted zone is caused by martensite at the interface between the oxidize layer and the matrix, thus leads to the reduction in protective effect of the passivation film. With the increase of martensite content, the film resistance decreases, and the corrosion resistance of the passivation film decreases. Micro cracks tend to initiate more easily after either cold work or hot work compared with primary solution annealed 321SS. The martensite phase distributed in the matrix is oxidized preferentially and suppresses the corrosion of austenitic phase. Under the conditions of this research, strain-induced martensite inhibits SCC crack initiation.

     

/

返回文章
返回