绕丝棒束组件过渡流摩擦阻力实验研究

李虹锐, 薛秀丽, 周志伟, 曾泽华, 罗锐

李虹锐, 薛秀丽, 周志伟, 曾泽华, 罗锐. 绕丝棒束组件过渡流摩擦阻力实验研究[J]. 原子能科学技术, 2024, 58(9): 1825-1832. DOI: 10.7538/yzk.2024.youxian.0348
引用本文: 李虹锐, 薛秀丽, 周志伟, 曾泽华, 罗锐. 绕丝棒束组件过渡流摩擦阻力实验研究[J]. 原子能科学技术, 2024, 58(9): 1825-1832. DOI: 10.7538/yzk.2024.youxian.0348
LI Hongrui, XUE Xiuli, ZHOU Zhiwei, ZENG Zehua, LUO Rui. Experimental Study on Frictional Pressure Drop Characteristics of Wire-wrapped Bundles in Transition Flow[J]. Atomic Energy Science and Technology, 2024, 58(9): 1825-1832. DOI: 10.7538/yzk.2024.youxian.0348
Citation: LI Hongrui, XUE Xiuli, ZHOU Zhiwei, ZENG Zehua, LUO Rui. Experimental Study on Frictional Pressure Drop Characteristics of Wire-wrapped Bundles in Transition Flow[J]. Atomic Energy Science and Technology, 2024, 58(9): 1825-1832. DOI: 10.7538/yzk.2024.youxian.0348

绕丝棒束组件过渡流摩擦阻力实验研究

详细信息
    通讯作者:

    罗 锐

  • 中图分类号: TL33

Experimental Study on Frictional Pressure Drop Characteristics of Wire-wrapped Bundles in Transition Flow

  • 摘要:

    绕丝棒束组件低流速下摩擦阻力是钠冷快堆堆芯热工水力研究的重点内容之一。通过对现有组件摩擦阻力系数公式应用于过渡流存在的问题、现有组件摩擦阻力实验在低流速时出现的不同摩擦阻力特性的分析讨论,以及对一个37棒组件低流速摩擦阻力的实验研究,提出了组件内流动的转捩特性和提高经验公式在低流速时计算准确性的有效策略。研究结果表明:绕丝棒束组件内流动转捩并不是同时发生,而是在部分子通道的局部先发生,随着流速的增加扩散到整个组件,只有当一定数量子通道都发生转捩时,棒束的平均摩擦阻力才会显著增加。绕丝棒束组件摩擦阻力系数公式应尽可能使用小的层流向过渡流转捩的临界Re和插值指数,使公式尽早开始转捩,并平滑向过渡流过渡。

     

    Abstract:

    The investigation of frictional pressure drops in wire-wrapped bundles at low flow velocities is crucial for thermal-hydraulic studies of sodium-cooled fast reactor cores. This study aims to refine empirical formulas for predicting friction factors in wire-wrapped bundles by addressing their limitations in accurately calculating friction factors during transition regime. By analyzing existing empirical formulas and meticulously observing frictional pressure drop experiments conducted under low-flow conditions that reported in the literature, the study proposes and demonstrates the mechanism of the laminar-to-transitional regime transition in wire-wrapped bundles. Additionally, experimental research was conducted on the frictional pressure drop of a 37-rod wire-wrapped bundle. A novel high-precision differential pressure measurement technique, the photographic liquid column manometer, was employed to enhance frictional pressure drop measurement accuracy. This innovative method achieves a measurement uncertainty of less than 2 Pa within a range of 0 to 300 Pa. The mass flow rate of the fluid was measured and converted to obtain the flow velocity through the assembly, further improving the accuracy of flow velocity measurements. The analysis and experiments reveal that the transition from the laminar to transitional regime does not occur uniformly but initiates locally in certain subchannels before spreading across the assembly as flow velocity increases. Significant increases in the frictional pressure drop occur only after a sufficient number of subchannels have undergone transition. This perspective is supported by extensive existing literature, which report that in assemblies with fewer rod bundles, smaller P/D and H/D values, and constructed from hard metal materials such as stainless steel, the friction factor at the initial stage of the transitional regime shows a significant increase or remains constant with increasing Reynolds number. Under these conditions, the high consistency of the P/D ratio within the assembly causes the fluid to transition within a narrow range of flow velocities, leading to a marked increase in the friction factor with Reynolds number. The research results also indicate that the prediction accuracy of the critical Reynolds number for the laminar-to-transitional flow transition significantly impacts the calculation accuracy of empirical formulas at low flow velocities. Formulas using smaller predicted values of the critical Reynolds number show better agreement between predicted values and the measured results in this study. Therefore, the study recommends adopting smaller critical Reynolds numbers and interpolation indices in empirical formulas to facilitate an early onset and smooth transition of laminar-to-transitional regime behavior in friction factors, thereby improving the accuracy of calculated friction factors.

     

  • 图  1   绕丝棒束组件几何结构

    a——组件几何结构;b——取压孔结构;c——测量组件取压孔轴向位置

    Figure  1.   Diagram of tested wire-wrapped rod bundle assembly

    图  2   液柱图像测压法液柱拍照系统

    Figure  2.   Photographic system for PLCM

    图  3   液柱顶部液面的图像

    Figure  3.   Image depicting meniscus surface of liquid column

    图  4   包含8个液柱的液柱图像

    Figure  4.   Typical image containing eight liquid columns

    图  5   组件不同轴向位置1个绕丝螺距长度产生的摩擦阻力压降

    Figure  5.   Axial pressure drop of a single wire helical pitch at various axial positions

    图  6   组件的摩擦阻力系数

    Figure  6.   Friction factor of tested wire-wrapped rod bundle assembly

    表  1   压差和质量流量测量的不确定度

    Table  1   Measurement uncertainties of pressure drop and mass flow rate

    参数测量范围不确定度
    压差0~100 Pa1 Pa
    100~200 Pa2 Pa
    200~500 Pa3 Pa
    500~1 600 Pa6 Pa
    质量流量0~0.3 kg/s0.25%
    0.3~0.5 kg/s0.48%
    下载: 导出CSV
  • [1]

    YANG H, LI H, XUE X, et al. Experimental investigation of the friction factor of wire-wrapped bundles at low velocities under natural circulation flow conditions[J]. Nuclear Science and Engineering, 2022, 196(3): 285-300. doi: 10.1080/00295639.2021.1973177

    [2]

    PACIO J, CHEN S K, CHEN Y M, et al. Analysis of pressure losses and flow distribution in wire-wrapped hexagonal rod bundles for licensing: Part Ⅱ, Evaluation of public experimental data[J]. Nuclear Engineering and Design, 2022, 388: 111606. doi: 10.1016/j.nucengdes.2021.111606

    [3]

    WANG M, JU H, WU J, et al. A review of CFD studies on thermal hydraulic analysis of coolant flow through fuel rod bundles in nuclear reactor[J]. Progress in Nuclear Energy, 2024, 171: 105175. doi: 10.1016/j.pnucene.2024.105175

    [4]

    CHEN S K, TODREAS N E, NGUYEN N T. Evaluation of existing correlations for the prediction of pressure drop in wire-wrapped hexagonal array pin bundles[J]. Nuclear Engineering and Design, 2014, 267: 109-131. doi: 10.1016/j.nucengdes.2013.12.003

    [5]

    CHEN S K, CHEN Y M, TODREAS N E. The upgraded Cheng and Todreas correlation for pressure drop in hexagonal wire-wrapped rod bundles[J]. Nuclear Engineering and Design, 2018, 335: 356-373. doi: 10.1016/j.nucengdes.2018.05.010

    [6]

    PACIO J, CHEN S K, CHEN Y M, et al. Analysis of pressure losses and flow distribution in wire-wrapped hexagonal rod bundles for licensing: Part Ⅰ, The Pacio-Chen-Todreas Detailed model (PCTD)[J]. Nuclear Engineering and Design, 2022, 388: 111607. doi: 10.1016/j.nucengdes.2021.111607

    [7]

    DIX A, KIM S. A novel friction factor model for wire-wrapped rod bundles[J]. Nuclear Engineering and Design, 2023, 401: 112104. doi: 10.1016/j.nucengdes.2022.112104

    [8] 周涛涛, 刘书勇, 郁杰. 全流态工况下绕丝棒束内的摩擦压降模型研究[J]. 核技术, 2023, 46(6): 060604.

    ZHOU Taotao, LIU Shuyong, YU Jie. Friction pressure drop model for wire-wrapped rod bundles in full flow[J]. Nuclear Techniques, 2023, 46(6): 060604(in Chinese).

    [9]

    CHUN M H, SEO K W. An experimental study and assessment of existing friction factor correlations for wire-wrapped fuel assemblies[J]. Annals of Nuclear Energy, 2001, 28(17): 1683-1695. doi: 10.1016/S0306-4549(01)00023-8

    [10]

    CHOI S K, CHOI I K, NAM H Y, et al. Measurement of pressure drop in a full-scale fuel assembly of a liquid metal reactor[J]. Journal of Pressure Vessel Technology, 2003, 125(2): 233-238. doi: 10.1115/1.1565076

    [11]

    BUBELIS E, SCHIKORR M. Review and proposal for best fit of wire-wrapped fuel bundle friction factor and pressure drop predictions using various existing correlations[J]. Nuclear Engineering and Design, 2008, 238(12): 3299-3320. doi: 10.1016/j.nucengdes.2008.06.024

    [12]

    TODREAS N, CHEN S K, PACIO J. Adventures in study of the pressure losses in wire-wrapped rod bundle arrays[J]. Nuclear Engineering and Design, 2020, 370: 110910. doi: 10.1016/j.nucengdes.2020.110910

    [13]

    REHME K. Pressure drop performance of rod bundles in hexagonal arrangements[J]. International Journal of Heat and Mass Transfer, 1972, 15(12): 2499-2517. doi: 10.1016/0017-9310(72)90143-3

    [14]

    MARTEN K, YONEKAWA S, HOFFMANN H. Experiments and correlations of pressure loss coefficients for hexagonal arranged rod bundles (P/D>1.02) with helical wire spacers in laminar and turbulent flows[R]. Germany: Kernforschungszentrum Karlsruhe GmbH, 1987.

    [15]

    BERTHOUX M, CADIOU T. The thermal hydraulics in a rod bundle representative of the start-up core of the ALLEGRO gas cooled fast reactor—Experimental and numerical approaches[J]. Nuclear Engineering and Design, 2010, 240(10): 3372-3386. doi: 10.1016/j.nucengdes.2010.07.009

    [16]

    CHENG S K, TODREAS N E. Hydrodynamic models and correlations for bare and wire-wrapped hexagonal rod bundles—Bundle friction factors, subchannel friction factors and mixing parameters[J]. Nuclear Engineering and Design, 1986, 92(2): 227-251. doi: 10.1016/0029-5493(86)90249-9

    [17]

    CHIU C, HAWLEY J, ROHSENOW W M, et al. Pressure drop measurements in LMFBR wire wrapped blanket assemblies[R]. USA: U. S. Department of Energy Office of Scientific and Technical Information, 1977.

    [18]

    MENEZES C, VAGHETTO R, HASSAN Y A. Experimental investigation of the subchannel axial pressure drop and hydraulic characteristics of a 61-pin wire wrapped rod bundle[J]. Journal of Fluids Engineering, 2022, 144(5): 051403. doi: 10.1115/1.4052745

    [19]

    CHANG S K, EUH D J, CHOI H S, et al. Flow distribution and pressure loss in subchannels of a wire-wrapped 37-pin rod bundle for a sodium-cooled fast reactor[J]. Nuclear Engineering and Technology, 2016, 48(2): 376-385. doi: 10.1016/j.net.2015.12.013

    [20]

    CHANG S K, EUH D J, KIM S, et al. Experimental study of the flow characteristics in an SFR type 61-pin rod bundle using iso-kinetic sampling method[J]. Annals of Nuclear Energy, 2017, 106: 160-169. doi: 10.1016/j.anucene.2017.03.024

    [21]

    CHENG S. Constitutive correlations for wire-wrapped subchannel analysis under forced and mixed convection conditions[D]. USA: Massachusetts Institute of Technology, 1984.

    [22]

    LIANG Y, ZHANG D, CHEN Y, et al. An experiment study of pressure drop and flow distribution in subchannels of a 37-pin wire-wrapped rod bundle[J]. Applied Thermal Engineering, 2020, 174: 115283. doi: 10.1016/j.applthermaleng.2020.115283

    [23]

    KIM H, SEO J, HASSAN Y A. Prediction of flow regime boundary and pressure drop for hexagonal wire-wrapped rod bundles using artificial neural networks[J]. Physics of Fluids, 2022, 34(10): 107103. doi: 10.1063/5.0110385

    [24] 周志伟, 李虹锐, 薛秀丽, 等. 含绕丝棒束低流速时阻力特性的实验研究[J]. 原子能科学技术, 2023, 57(5): 960-967.

    ZHOU Zhiwei, LI Hongrui, XUE Xiuli, et al. Experimental investigation of frictional pressure drop of wire-wrapped bundle at low velocity[J]. Atomic Energy Science and Technology, 2023, 57(5): 960-967(in Chinese).

图(6)  /  表(1)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  6
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-14
  • 修回日期:  2024-05-19
  • 网络出版日期:  2024-07-21
  • 刊出日期:  2024-09-19

目录

    /

    返回文章
    返回