多区非平衡汽-气稳压器模型开发与验证

朱俊志, 屈漕卿, 时维立, 杨珏, 苟军利, 樊杰, 方宇坤, 黄凯

朱俊志, 屈漕卿, 时维立, 杨珏, 苟军利, 樊杰, 方宇坤, 黄凯. 多区非平衡汽-气稳压器模型开发与验证[J]. 原子能科学技术, 2025, 59(3): 625-633. DOI: 10.7538/yzk.2024.youxian.0448
引用本文: 朱俊志, 屈漕卿, 时维立, 杨珏, 苟军利, 樊杰, 方宇坤, 黄凯. 多区非平衡汽-气稳压器模型开发与验证[J]. 原子能科学技术, 2025, 59(3): 625-633. DOI: 10.7538/yzk.2024.youxian.0448
ZHU Junzhi, QU Caoqing, SHI Weili, YANG Jue, GOU Junli, FAN Jie, FANG Yukun, HUANG Kai. Development and Validation of Multi-zone Non-equilibrium Steam-gas Pressurizer Model[J]. Atomic Energy Science and Technology, 2025, 59(3): 625-633. DOI: 10.7538/yzk.2024.youxian.0448
Citation: ZHU Junzhi, QU Caoqing, SHI Weili, YANG Jue, GOU Junli, FAN Jie, FANG Yukun, HUANG Kai. Development and Validation of Multi-zone Non-equilibrium Steam-gas Pressurizer Model[J]. Atomic Energy Science and Technology, 2025, 59(3): 625-633. DOI: 10.7538/yzk.2024.youxian.0448

多区非平衡汽-气稳压器模型开发与验证

详细信息
  • 中图分类号: TL48

Development and Validation of Multi-zone Non-equilibrium Steam-gas Pressurizer Model

  • 摘要:

    先进一体化小堆采用蒸汽-氮气稳压器,其结构简单,具有很好的自稳压能力。为了研究蒸汽-氮气稳压器的热工水力特性,建立了基于多区非平衡状态的蒸汽-氮气稳压器模型。该模型由液区、饱和区和气区3部分组成,每个区进一步均分为多个控制体。本研究从质量和能量守恒角度描述了稳压器中的重要热工水力学现象:体积蒸发、体积冷凝以及壁面换热等,并提出了控制方程的离散求解方法。通过稳压器升压实验结果对蒸汽-氮气稳压器模型进行了验证,结果表明,在升压阶段,多区非平衡稳压器模型可准确模拟压力响应特性,计算值与实验值相对误差在9%以内;在冷凝降压阶段,由于氮气存在对壁面换热冷凝的影响,导致计算值与实验值误差增大。整体上,多区非平衡稳压器模型能够较好地预测蒸汽-氮气稳压器在瞬态下的压力响应特性,可用于汽-气稳压器稳压特性分析。

     

    Abstract:

    The advanced integrated small reactor adopts steam-gas pressurizer with simple structure and pressure self-stabilizing ability. In order to study the thermo-hydraulics characteristics of steam-gas pressurizer, a steam-gas pressurizer model based on multi-zone non-equilibrium state was established. The multi-zone non-equilibrium steam-gas pressurizer model consists of three parts: liquid zone, saturated zone and gas (steam) zone, and each zone could be further divided into several control volumes. From the point of view of mass and energy conservation, the important thermodynamic and hydraulic phenomena in pressurizer, such as volume evaporation, volume condensation and wall heat transfer, were described. By assuming that the volume evaporation and condensation come from the rise of bubbles and the fall of condensate, the volume evaporation models and volume condensation models were established, and considering the influence of nitrogen on the heat exchanger process in the gas (steam) zone, the wall heat exchange model was modified by empirical relation to ensure that the heat exchange process could be accurately simulated, furthermore the discrete solution method of the steam-gas pressurizer governing equation was proposed. The calculated values of the steam-gas pressurizer model were compared with the boosting experimental results of the steam-gas pressurizer with different nitrogen fractions (3.2%, 9.7%, 20%) of Massachusetts Institute of Technology (MIT). The results show that, in the boosting stage, the multi-zone non-equilibrium steam-gas pressurizer model can accurately simulate the pressure response characteristics. The maximum relative error between the multi-zone non-equilibrium steam-gas pressurizer model calculated pressure value and the experimental value is about 1.93% under the 9.7% nitrogen fraction case, and about 1.60% under the 3.2% nitrogen fraction case, and 3.80% when the model calculates the pressure value and the experimental value under the 20% nitrogen fraction case. In the condensation and depressurization stage, the relative error between the calculated value and the experimental value increases due to the influence of nitrogen on the heat exchange condensation of the wall, but the relative error between the model calculated value and the experimental value of different nitrogen fraction cases is within 9%. On the whole the developed steam-gas pressurizer model can accurately predict the pressure response of pressurizer and can be used to analyze the pressure stabilization characteristics of steam-gas pressurizer.

     

  • 图  1   汽-气稳压器模型示意图

    Figure  1.   Schematic diagram of steam-gas pressurizer model

    图  2   MIT稳压器注入实验装置示意图[2]

    Figure  2.   Diagram of MIT pressurizer injection experimental setup[2]

    图  3   饱和区体积敏感性分析

    Figure  3.   Volume sensitivity analysis of saturation region

    图  4   9.7%氮气份额下压力计算值与实验值对比

    Figure  4.   Pressure comparison between calculated and experimental values of 9.7% nitrogen fraction

    图  5   9.7%氮气份额下不同区域温度对比

    Figure  5.   Comparison of temperature in different regions of 9.7% nitrogen fraction

    图  6   3.2%和20%下氮气压力计算值与实验值对比

    Figure  6.   Pressure comparison between calculated and experimental values of 3.2% and 20% nitrogen fractions

    图  7   不同氮气份额下气区与壁面换热量及气区蒸汽冷凝量对比

    Figure  7.   Comparison of heat transfer between gas zone and wall and steam condensation capacity in gas regions with different nitrogen fraction

  • [1] 张亚军, 王秀珍. 200 MW低温核供热堆研究进展及产业化发展前景[J]. 核动力工程, 2003, 24(2): 180-183, 189. doi: 10.3969/j.issn.0258-0926.2003.02.019

    ZHANG Yajun, WANG Xiuzhen. Development progress and prospect for industrial application of the 200 MW low temperature nuclear heating reactor[J]. Nuclear Power Engineering, 2003, 24(2): 180-183, 189(in Chinese). doi: 10.3969/j.issn.0258-0926.2003.02.019

    [2]

    JANG B I, KIM M H, JEUN G. Experimental and computational investigation of a natural circulation system in Regional Energy Reactor-10 MWth[J]. Nuclear Engineering and Design, 2011, 241(6): 2214-2223. doi: 10.1016/j.nucengdes.2011.04.015

    [3]

    LEONARD M T. The effects of a non-condensable gas on pressurizer insurge transients[D]. USA: Massachu-setts Institute of Technology, 1983.

    [4]

    KIM T W, KIM J W, PARK G C. Development of nonequilibrium pressurizer model with noncondensable gas[J]. Nuclear Engineering and Design, 2006, 236(4): 375-384. doi: 10.1016/j.nucengdes.2005.09.003

    [5]

    KIM T W. Development of steam-gas pressurizer model based on two-region nonequilibrium with noncondensable gas[D]. Korea: Seoul National University, 2005.

    [6]

    KIM S N, GRIFFITH P. PWR pressurizer modeling[J]. Nuclear Engineering and Design, 1987, 102(2): 199-209. doi: 10.1016/0029-5493(87)90253-6

    [7]

    MURASE M, KATAOKA Y, FUJII T. Evaporation and condensation heat transfer with a noncondensable gas present[J]. Nuclear Engineering and Design, 1993, 141(1-2): 135-143. doi: 10.1016/0029-5493(93)90098-T

    [8]

    KAGEYAMA T, PETERSON P F, SCHROCK V E. Diffusion layer modeling for condensation in vertical tubes with noncondensable gases[J]. Nuclear Engineering and Design, 1993, 141(1-2): 289-302. doi: 10.1016/0029-5493(93)90107-K

    [9]

    AKAKI H, KATAOKA Y, MURASE M. Measurement of condensation heat transfer coefficient inside a vertical tube in the presence of noncondensable gas[J]. Journal of Nuclear Science and Technology, 1995, 32(6): 517-526. doi: 10.1080/18811248.1995.9731739

    [10]

    HASSAN Y A, BANERJEE S. Implementation of a non-condensable model in RELAP5/MOD3[J]. Nuclear Engineering and Design, 1996, 162(2-3): 281-300. doi: 10.1016/0029-5493(95)01133-1

    [11]

    MORITA K, MATSUMOTO T, AKASAKA R, et al. Development of multicomponent vaporization/condensation model for a reactor safety analysis code SIMMER-Ⅲ: Theoretical modeling and basic verification[J]. Nuclear Engineering and Design, 2003, 220(3): 224-239. doi: 10.1016/S0029-5493(02)00351-5

    [12]

    GUNTHER F, KREITH F. Photographic study of bubble formation in heat transfer to subcooled water progress report[R]. USA: Jet Propulsion Laboratory, California Institute of Technology, 1950.

    [13]

    COLE R, ROHSENOW W M. Correlation of bubble departure diameters for boiling of saturated liquids[J]. Chemical Engineering Progress, 1969, 65: 211-213.

    [14]

    BOTELHO D A, de SAMPAIO P A B, LAPA C M F, et al. The IRIS pressurizer: Simulation of out-surge transients and optimization procedure to design scaled experiments[J]. Progress in Nuclear Energy, 2008, 50(7): 730-739. doi: 10.1016/j.pnucene.2007.12.006

    [15]

    PETERSON P F, SCHROCK V E, KAGEYAMA T. Diffusion layer theory for turbulent vapor condensation with noncondensable gases[J]. Journal of Heat Transfer, 1993, 115(4): 998-1003. doi: 10.1115/1.2911397

    [16]

    VIEROW K M, SCHROCK V E. Condensation in a natural circulation loop with noncondensable gases, Part Ⅰ: Heat transfer[C]//Proceedings of the International Conference on Multiphase Flows’91. Tsukuba, Japan: [s. n.], 1991.

图(7)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  13
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-22
  • 修回日期:  2024-06-19
  • 网络出版日期:  2024-12-15
  • 刊出日期:  2025-03-19

目录

    /

    返回文章
    返回