冷轧及热处理对核用TiVTaNb难熔高熵合金冲击性能的影响

殷雪, 豆艳坤, 贺新福, 靳柯, 杨文, 徐海涛

殷雪, 豆艳坤, 贺新福, 靳柯, 杨文, 徐海涛. 冷轧及热处理对核用TiVTaNb难熔高熵合金冲击性能的影响[J]. 原子能科学技术, 2025, 59(2): 452-460. DOI: 10.7538/yzk.2024.youxian.0485
引用本文: 殷雪, 豆艳坤, 贺新福, 靳柯, 杨文, 徐海涛. 冷轧及热处理对核用TiVTaNb难熔高熵合金冲击性能的影响[J]. 原子能科学技术, 2025, 59(2): 452-460. DOI: 10.7538/yzk.2024.youxian.0485
YIN Xue, DOU Yankun, HE Xinfu, JIN Ke, YANG Wen, XU Haitao. Effect of Cold Rolling and Heat Treatment on Impact Property of TiVTaNb Refractory High-entropy Alloy for Nuclear Reactor[J]. Atomic Energy Science and Technology, 2025, 59(2): 452-460. DOI: 10.7538/yzk.2024.youxian.0485
Citation: YIN Xue, DOU Yankun, HE Xinfu, JIN Ke, YANG Wen, XU Haitao. Effect of Cold Rolling and Heat Treatment on Impact Property of TiVTaNb Refractory High-entropy Alloy for Nuclear Reactor[J]. Atomic Energy Science and Technology, 2025, 59(2): 452-460. DOI: 10.7538/yzk.2024.youxian.0485

冷轧及热处理对核用TiVTaNb难熔高熵合金冲击性能的影响

基金项目: 中核集团菁英人才项目;国家自然科学基金(12405324);中国原子能科学研究院院长基金(219256)
详细信息
    通讯作者:

    殷 雪

  • 中图分类号: TL34;TG132.3

Effect of Cold Rolling and Heat Treatment on Impact Property of TiVTaNb Refractory High-entropy Alloy for Nuclear Reactor

  • 摘要:

    难熔高熵合金是由多种难熔元素形成等原子比或近等原子比的多主元合金,由于其具有优异的高温力学性能、耐腐蚀性能和抗辐照性能,有望作为新型抗辐照结构材料应用于新一代先进核能反应堆系统。本文针对具有强塑性匹配的TiVTaNb高熵合金,研究了冷轧及热处理对TiVTaNb难熔高熵合金冲击性能的影响。试验结果表明冷轧及热处理可显著提升合金的冲击性能,均匀态TiVTaNb合金的冲击吸收能为11.92 J,为铸态TiVTaNb合金冲击吸收能(5.15 J)的2.3倍,均匀态TiVTaNb合金的裂纹形成能及裂纹扩展能均提高,分别为铸态TiVTaNb合金的1.33、2.88倍。均匀态合金的冲击断口上出现了明显的纤维区,且剪切唇面积及弯曲程度均明显大于铸态。铸态合金冲击断口上的韧窝小且浅,而均匀态合金断口上的韧窝相对大且深,并且在大韧窝中还分布着许多小韧窝,可更多的耗散冲击能量。铸态及均匀态合金的冲击变形均由位错和孪晶协同主导,但是均匀化后的合金在冲击变形过程中位错密度明显升高,变形孪晶数量增多,为合金在冲击载荷作用下冲击性能改善和抗裂性能增强的主要原因。相关结果将为核反应堆先进结构材料的研发提供重要的理论参考和设计依据。

     

    Abstract:

    The refractory high-entropy alloy (RHEA) usually forms a multi-principal element alloy with atomic ratio or near equal atomic ratio via adding a variety of high melting point elements. It is expected to be used as a new type of anti-irradiation structural material in the new generation of advanced nuclear reactor system due to the excellent mechanical properties at high temperatures, corrosion resistance and radiation resistance. In the present study, the effect of cold rolling and heat treatment on Charpy impact properties of TiVTaNb RHEA with high strength-ductility trade-off was systematically studied by using the instrumented Charpy impact testing machine. The experimental results show that after cold rolling and heat treatment, the segregation of elements in the as-cast alloy disappears, and the alloy microstructure is equiaxed grains with uniform composition. No element segregation or second phase precipitation is observed inside the grains and at the grain boundaries of the homogenized alloy under SEM. Cold rolling and heat treatment can significantly improve the impact absorbed energy of the alloy. The impact absorbed energy of homogenized TiVTaNb alloy is 11.92 J, which is 2.3 times that of as-cast TiVTaNb alloy (5.15 J). The fracture mode of as-cast TiVTaNb alloy under impact load is a ductile-brittle mixed fracture mode dominated by ductile fracture. However, the fracture mode of homogenized TiVTaNb alloy is ductile fracture, with obvious fiber regions in the lower part of the V-shaped notch, larger bending degree and area of shear lips, deeper and larger dimples with small dimples distributed in it for both the crack initiation region and the crack propagation region, which all effectively dissipate more impact energy. The crack initiation energy and propagation energy of homogenized TiVTaNb alloy are both higher than those of the as-cast TiVTaNb alloy, especially the increase of crack propagation energy is larger, which is 2.88 times that of as-cast TiVTaNb alloy. This indicates that the cold-rolled and heat-treated TiVTaNb alloy has higher resistance to crack initiation and crack propagation, and its crack propagation rate is slower. The cold rolling and heat treatment processes do not change the impact deformation mechanism of the alloy. The deformation mechanism is synergized by dislocation activities and deformation twinning for both as-cast and homogenized alloys. However, the dislocation density and the number of deformation twins increase significantly during the impact deformation process of homogenized TiVTaNb alloy, which is the main contribution for the improved impact properties and the stronger crack resistance under impact loading.

     

  • 图  1   合金制备过程

    Figure  1.   Process of alloy preparation

    图  2   冲击试样

    Figure  2.   Impact sample

    图  3   冲击试验TiVTaNb合金载荷-位移曲线

    a——铸态TiVTaNb合金;b——均匀态TiVTaNb合金

    Figure  3.   Load-displacement curve of TiVTaNb alloy during impact testing

    图  4   TiVTaNb合金微观组织

    a——铸态TiVTaNb合金微观组织;b——铸态TiVTaNb合金EDS;c——铸态TiVTaNb合金XRD;d——均匀态TiVTaNb合金微观组织;e——均匀态TiVTaNb合金微观组织局部放大;f——均匀态TiVTaNb合金XRD

    Figure  4.   Microstructure of TiVTaNb alloy

    图  5   冲击前后试样IPF图

    a——冲击前铸态TiVTaNb合金;b——冲击后铸态TiVTaNb合金;c——冲击前均匀态TiVTaNb合金;d——冲击后均匀态TiVTaNb合金

    Figure  5.   IPF map of impact sample before and after impact testing

    图  6   裂纹扩展区域的KAM图

    a——铸态TiVTaNb合金;b——均匀态TiVTaNb合金

    Figure  6.   KAM map of crack propagation region

    图  7   断口侧面的宏观形貌

    a——铸态TiVTaNb合金;b——均匀态TiVTaNb合金

    Figure  7.   Macroscopic morphology of fracture surface

    图  8   冲击断口形貌

    a——铸态TiVTaNb合金;b——均匀态TiVTaNb合金

    Figure  8.   Morphology of impact fracture

    图  9   冲击吸收能的分配

    Figure  9.   Distribution of impact absorption energy

    图  10   裂纹扩展路径

    a——铸态TiVTaNb合金;b——均匀态TiVTaNb合金

    Figure  10.   Crack propagation path

    图  11   GND分布

    a——铸态TiVTaNb合金;b——均匀态TiVTaNb合金

    Figure  11.   Distribution of GND

  • [1]

    YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. doi: 10.1002/adem.200300567

    [2]

    CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375-377: 213-218. doi: 10.1016/j.msea.2003.10.257

    [3]

    GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158. doi: 10.1126/science.1254581

    [4]

    LEI Z, LIU X, WU Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J]. Nature, 2018, 563: 546-550. doi: 10.1038/s41586-018-0685-y

    [5]

    MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511. doi: 10.1016/j.actamat.2016.08.081

    [6]

    SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9): 1758-1765. doi: 10.1016/j.intermet.2010.05.014

    [7]

    SENKOV O N, MIRACLE D B, CHAPUT K J, et al. Development and exploration of refractory high entropy alloys-a review[J]. Journal of Materials Research, 2018, 33(19): 3092-3128. doi: 10.1557/jmr.2018.153

    [8] 梅金娜, 姜凤阳, 卫娜, 等. 轧制变形对高熵合金微观组织和力学性能的影响[J]. 金属热处理, 2022, 47(3): 67-72.

    MEI Jinna, JIANG Fengyang, WEI Na, et al. Effect of rolling deformation on microstructure and mechanical properties of high-entropy alloy[J]. Heat Treatment of Metals, 2022, 47(3): 67-72(in Chinese).

    [9] 胥俊伟. 高熵合金冷轧及其退火处理后的组织与性能研究[D]. 秦皇岛: 燕山大学, 2020.
    [10] 孙通通. 冷轧与热处理对Al0.5CoCr0.8FeNi2.5V0.2高熵合金组织和性能的影响研究[D]. 济南: 山东大学, 2022.
    [11] 李晓婷. Ti-Zr-Nb-V-Al高熵合金的微观结构及力学性能的研究[D]. 沈阳: 东北大学, 2020.
    [12] 马月莉. 难熔高熵合金组织结构与力学性能的研究[D]. 上海: 上海大学, 2019.
    [13]

    YAO H W, QIAO J W, GAO M C, et al. NbTaV-(Ti, W) refractory high-entropy alloys: Experiments and modeling[J]. Materials Science and Engineering: A, 2016, 674: 203-211. doi: 10.1016/j.msea.2016.07.102

    [14]

    LEE C, SONG G, GAO M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy[J]. Acta Materialia, 2018, 160: 158-172. doi: 10.1016/j.actamat.2018.08.053

    [15]

    WU Y D, CAI Y H, WANG T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J]. Materials Letters, 2014, 130: 277-280. doi: 10.1016/j.matlet.2014.05.134

    [16]

    ALEXOPOULOS N D, STYLIANOS A, CAMPBELL J. Dynamic fracture toughness of Al-7Si-Mg (A357) aluminum alloy[J]. Mechanics of Materials, 2013, 58: 55-68. doi: 10.1016/j.mechmat.2012.11.005

    [17] 李姚君, 王丰, 苏娇, 等. 冷轧变形对M50轴承钢回火组织和力学性能的影响[J]. 热加工工艺, 2020, 49(24): 109-112.

    LI Yaojun, WANG Feng, SU Jiao, et al. Effects of cold rolling deformation on tempering structure and mechanical properties of M50 bearing steel[J]. Hot Working Technology, 2020, 49(24): 109-112(in Chinese).

    [18]

    KAREER A, WAITE J C, LI B, et al. Short communication: ‘Low activation, refractory, high entropy alloys for nuclear applications’[J]. Journal of Nuclear Materials, 2019, 526: 151744. doi: 10.1016/j.jnucmat.2019.151744

    [19]

    WALLACE D C. Melting of elements[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1991, 433(1889): 631-661. doi: 10.1098/rspa.1991.0068

    [20]

    LI J, QIN W, PENG P, et al. Effects of geometric dimension and grain size on impact properties of 316L stainless steel[J]. Materials Letters, 2021, 284: 128908. doi: 10.1016/j.matlet.2020.128908

    [21]

    XIONG L, YOU Z S, QU S D, et al. Fracture behavior of heterogeneous nanostructured 316L austenitic stainless steel with nanotwin bundles[J]. Acta Materialia, 2018, 150: 130-138. doi: 10.1016/j.actamat.2018.02.065

    [22]

    CORDERO Z C, KNIGHT B E, SCHUH C A. Six decades of the hall-petch effect-A survey of grain-size strengthening studies on pure metals[J]. International Materials Reviews, 2016, 61(8): 495-512. doi: 10.1080/09506608.2016.1191808

    [23]

    DUAN Q Q, QU R T, ZHANG P, et al. Intrinsic impact toughness of relatively high strength alloys[J]. Acta Materialia, 2018, 142: 226-235. doi: 10.1016/j.actamat.2017.09.064

    [24]

    JIANG W, GAO X, CAO Y, et al. Charpy impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy at ambient and cryogenic temperatures[J]. Materials Science and Engineering: A, 2022, 837: 142735. doi: 10.1016/j.msea.2022.142735

    [25]

    SALEM A A, KALIDINDI S R, DOHERTY R D. Strain hardening of titanium: Role of deformation twinning[J]. Acta Materialia, 2003, 51(14): 4225-4237. doi: 10.1016/S1359-6454(03)00239-8

    [26]

    DENG X G, HUI S X, YE W J, et al. Analysis of twinning behavior of pure Ti compressed at different strain rates by Schmid factor[J]. Materials Science and Engineering: A, 2013, 575: 15-20. doi: 10.1016/j.msea.2013.03.031

    [27]

    YAO K, MIN X, EMURA S, et al. Enhancement of impact toughness of β-type Ti-Mo alloy by {332}twinning[J]. Journal of Materials Science, 2019, 54(16): 11279-11291. doi: 10.1007/s10853-019-03679-2

    [28]

    SHTERNER V, TIMOKHINA I B, BELADI H. On the work-hardening behaviour of a high manganese TWIP steel at different deformation temperatures[J]. Materials Science and Engineering: A, 2016, 669: 437-446. doi: 10.1016/j.msea.2016.05.104

    [29]

    JEONG K, JIN J E, JUNG Y S, et al. The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel[J]. Acta Materialia, 2013, 61(9): 3399-3410. doi: 10.1016/j.actamat.2013.02.031

    [30]

    BOUAZIZ O, ALLAIN S, SCOTT C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels[J]. Scripta Materialia, 2008, 58(6): 484-487. doi: 10.1016/j.scriptamat.2007.10.050

    [31]

    YANG M, ZHOU L, WANG C, et al. High impact toughness of CrCoNi medium-entropy alloy at liquid-helium temperature[J]. Scripta Materialia, 2019, 172: 66-71. doi: 10.1016/j.scriptamat.2019.07.010

    [32]

    HUANG S, ZHAO Q, ZHAO Y, et al. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys[J]. Journal of Materials Science & Technology, 2021, 79: 147-164.

    [33]

    HUANG S, ZHAO Q, LIN C, et al. In-situ investigation of tensile behaviors of Ti-6Al alloy with extra low interstitial[J]. Materials Science and Engineering: A, 2021, 809: 140958. doi: 10.1016/j.msea.2021.140958

    [34]

    TANGUY D, RAZAFINDRAZAKA M, DELAFOSSE D. Multiscale simulation of crack tip shielding by a dislocation[J]. Acta Materialia, 2008, 56(11): 2441-2449. doi: 10.1016/j.actamat.2008.01.031

    [35]

    NORONHA S J, FARKAS D. Effect of dislocation blocking on fracture behavior of Al and α-Fe: A multiscale study[J]. Materials Science and Engineering: A, 2004, 365(1-2): 156-165. doi: 10.1016/j.msea.2003.09.022

    [36]

    LI X, LI W, IRVING D L, et al. Ductile and brittle crack-tip response in equimolar refractory high-entropy alloys[J]. Acta Materialia, 2020, 189: 174-187. doi: 10.1016/j.actamat.2020.03.004

    [37]

    KWASNIAK P, CLOUET E. Influence of simple metals on the stability of 〈a〉 basal screw dislocations in hexagonal titanium alloys[J]. Acta Materialia, 2019, 180: 42-50. doi: 10.1016/j.actamat.2019.08.039

图(11)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  5
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 修回日期:  2024-07-03
  • 网络出版日期:  2024-12-09
  • 刊出日期:  2025-02-19

目录

    /

    返回文章
    返回