Loading [MathJax]/jax/output/SVG/jax.js

铅铋冷却带绕丝棒束内腐蚀产物沉积特性数值模拟研究

黄睿, 孙毓博, 傅俊森, 肖瑶, 顾汉洋

黄睿, 孙毓博, 傅俊森, 肖瑶, 顾汉洋. 铅铋冷却带绕丝棒束内腐蚀产物沉积特性数值模拟研究[J]. 原子能科学技术, 2025, 59(3): 597-606. DOI: 10.7538/yzk.2024.youxian.0570
引用本文: 黄睿, 孙毓博, 傅俊森, 肖瑶, 顾汉洋. 铅铋冷却带绕丝棒束内腐蚀产物沉积特性数值模拟研究[J]. 原子能科学技术, 2025, 59(3): 597-606. DOI: 10.7538/yzk.2024.youxian.0570
HUANG Rui, SUN Yubo, FU Junsen, XIAO Yao, GU Hanyang. Numerical Study of Deposition Characteristic of Corrosion Product in Lead-bismuth Cooled Wire-wrapped Rod Bundle[J]. Atomic Energy Science and Technology, 2025, 59(3): 597-606. DOI: 10.7538/yzk.2024.youxian.0570
Citation: HUANG Rui, SUN Yubo, FU Junsen, XIAO Yao, GU Hanyang. Numerical Study of Deposition Characteristic of Corrosion Product in Lead-bismuth Cooled Wire-wrapped Rod Bundle[J]. Atomic Energy Science and Technology, 2025, 59(3): 597-606. DOI: 10.7538/yzk.2024.youxian.0570

铅铋冷却带绕丝棒束内腐蚀产物沉积特性数值模拟研究

基金项目: 国家自然科学基金(12322510,12075150,12275174);上海市青年科技启明星计划(22QA1404500)
详细信息
    通讯作者:

    肖 瑶

  • 中图分类号: TL334

Numerical Study of Deposition Characteristic of Corrosion Product in Lead-bismuth Cooled Wire-wrapped Rod Bundle

  • 摘要:

    液态铅铋合金在流动过程中会腐蚀管道产生腐蚀产物与氧化物颗粒,在燃料棒表面沉积、聚集后会使传热恶化并可能造成安全隐患。因此,本文以19棒束铅铋燃料组件为参考对象,基于ANSYS Fluent中的离散相模型对铅铋冷却带绕丝棒束内的颗粒物运动沉积过程进行了数值模拟,获得了颗粒物在带绕丝棒束通道内的沉积特性,分析了入口流速、入口温度与颗粒物粒径对颗粒物沉积的影响。结果表明:颗粒物在轴向上的主要沉积位置为通道入口处,在燃料棒周向上的主要沉积位置为绕丝迎风面与燃料棒表面的狭缝处,在流道壁面的主要沉积位置为绕丝位于角子通道内时对应的棱附近;颗粒物粒径、流体流速以及流体入口温度的升高会使得燃料棒包壳表面和流道壁面的沉积率增大,但对沉积的轴向分布无明显影响。本文结果可为铅基堆的反应堆安全设计提供参考。

     

    Abstract:

    Lead-based reactor using liquid lead-bismuth alloys as coolant has many advantages and is a promising type of fourth-generation reactors for a wide range of applications. However, the compatibility problem between liquid metal and structural materials exists in lead-based reactors. Corrosion products are generated from the core, precipitate as oxide particles at the cold end of the circuit, and undergo deposition in the steam generator, piping, and within the core as the coolant flows. During the flow process, lead-bismuth alloy will corrode the structural material and produce corrosion products, which will deteriorate the heat transfer and may cause safety hazards after deposition and aggregation on the surface of fuel rods. Therefore, a numerical study of particle deposition which takes a 19 wire-wrapped rod bundle fuel assemble as a reference object was carried out based on the discrete phase model (DPM) in ANSYS Fluent. Deposition characteristics of oxide particles in the rod bundle were obtained. Specifically, the axial and circumferential deposition distributions of corrosion product particulate oxide particles on the fuel rod cladding and hexagonal flow channel walls were investigated, respectively. Besides, effect of inlet flow velocity, fluid inlet temperature and particle diameter on the deposition characteristics were also analyzed. The results show that the main deposition location in the axial direction is the inlet of the rod bundle. In the circumferential direction, the main deposition position on the fuel rod is the gap between the windward side of the wire and the fuel rod surface, and the main deposition position on the hexagonal flow channel wall is near the prongs that correspond to the wrapped wire when it is in the angular sub-channel. The effect of the inlet boundary conditions on the particle deposition rate and deposition distribution is as follows. An increase in the inlet flow velocity enhances the deposition rate, but the lift effect decreases as the flow rate increases. An increase of the fluid inlet temperature enhances the deposition rate because the increase of inlet temperature reduces the density and viscosity of the fluid. As the particle diameter increases, the deposition rate increases because the increase in particle size of the particulate matter leads to an increase in the mass of a single particle, greater inertia, weaker flow field following, and easier deposition. The axial particle deposition distribution is insensitive to changes in fluid velocity, fluid temperature and particle size.

     

  • 图  1   流体域的几何结构

    Figure  1.   Geometry structure of fluid domain

    图  2   绕丝与燃料棒接触处理方式

    Figure  2.   Treatment for wire and rod contact

    图  3   流体域截面网格

    Figure  3.   Mesh of fluid domain section

    图  4   子通道温度实验值与模拟值比较

    Figure  4.   Comparison of sub-channel temperature between experiment and simulation values

    图  5   网格无关性分析

    Figure  5.   Mesh independence analysis

    图  6   粒径为2 μm的颗粒物在包壳外表面的沉积情况

    Figure  6.   Deposition of 2 μm particle on surface of cladding

    图  7   包壳表面沉积量的轴向分布

    Figure  7.   Axial distribution of deposition on cladding surface

    图  8   流道壁面沉积量的轴向分布

    Figure  8.   Axial distribution of deposition on hexagonal flow channel wall

    图  9   粒径为2 μm的颗粒物在中心棒包壳的沉积分布

    Figure  9.   Deposition of 2 μm particle on central rod cladding surface

    图  10   粒径为2 μm的颗粒物在流道壁面的沉积

    Figure  10.   Deposition of 2 μm particle on hexagonal flow channel wall

    图  11   不同轴向位置的子通道颗粒物浓度

    Figure  11.   Sub-channel particle concentration at different axial positions

    图  12   不同轴向位置的子通道湍动能

    Figure  12.   Sub-channel turbulence kinetic energy at different axial positions

    图  13   不同流速下颗粒物的沉积率

    Figure  13.   Particle deposition rate under different fluid velocities

    图  14   不同流速下颗粒物的轴向沉积分布

    Figure  14.   Axial deposition distribution of particle under different fluid velocities

    图  15   不同入口温度下颗粒物的沉积率

    Figure  15.   Particle deposition rate under different inlet temperatures

    图  16   不同入口温度下颗粒物的轴向沉积分布

    Figure  16.   Axial deposition distribution of particle under different inlet temperatures

    图  17   不同粒径颗粒物的沉积率

    Figure  17.   Particle deposition rate under different diameters

    图  18   不同粒径颗粒物的轴向沉积分布

    Figure  18.   Axial deposition distribution of particle under different diameters

    图  19   不同粒径颗粒物的占比分布

    Figure  19.   Proportion of different diameter particles along axial direction

    表  1   燃料组件几何参数

    Table  1   Parameter of fuel assembly

    参数参数值
    棒束排列方式三角形排列
    燃料棒数量19
    外径,mm8.2
    栅距,mm10.49
    栅径比(P/D1.279
    加热段长度,mm870
    绕丝直径,mm2.2
    绕丝螺距,mm328
    燃料组件边心距,mm24.65
    下载: 导出CSV

    表  2   液态铅铋合金热物性参数

    Table  2   Thermophysical property of liquid lead-bismuth alloy

    参数 参数值
    密度ρ,kg·m−3 110961.3236T
    比定压热容cp,J·(kg·K)−1 1592.72×102T+7.12×106T2
    热导率λ,W·(m·K)−1 3.61+1.517×102T1.741×106T2
    动力黏度μ,kg·(m·s)−1 4.94×104e754.1T
    下载: 导出CSV

    表  3   边界条件

    Table  3   Boundary condition

    边界 边界值
    入口流体流速v,m·s−1 0.5~3
    入口温度T,K 473.15~673.15
    燃料组件总功率Q,kW 197
    颗粒物粒径dp,mm 0.5~10
    颗粒物质量流量qm,kg·s−1 1×10−7
    下载: 导出CSV
  • [1]

    ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O G, et al. Innovative nuclear technology based on modular multi-purpose lead-bismuth cooled fast reactors[J]. Progress in Nuclear Energy, 2008, 50(2/3/4/5/6): 170-178.

    [2]

    ZHANG J, LI N. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1/2/3): 351-377.

    [3] 闫静贤, 赵平辉, 李远杰. 基于CFD方法对液态铅铋合金回路中腐蚀及腐蚀产物沉积的研究[J]. 核科学与工程, 2022, 42(4): 785-791. doi: 10.3969/j.issn.0258-0918.2022.04.007

    YAN Jingxian, ZHAO Pinghui, LI Yuanjie. Study on corrosion and corrosion product deposition in liquid lead-bismuth alloy loop by the CFD method[J]. Nuclear Science and Engineering, 2022, 42(4): 785-791(in Chinese). doi: 10.3969/j.issn.0258-0918.2022.04.007

    [4] 王琛, 王成龙, 张衍, 等. 液态铅铋合金管内流动传热特性研究[J]. 原子能科学技术, 2021, 55(5): 822-828. doi: 10.7538/yzk.2020.youxian.0356

    WANG Chen, WANG Chenglong, ZHANG Yan, et al. Investigation on flow heat transfer characteristic of lead-bismuth eutectic alloy[J]. Atomic Energy Science and Technology, 2021, 55(5): 822-828(in Chinese). doi: 10.7538/yzk.2020.youxian.0356

    [5] 杜晓超, 刘帅, 刘鹏, 等. 基于DPM模型的铅铋合金中颗粒物对管道冲蚀的数值模拟研究[J]. 核动力工程, 2021, 42(1): 48-53.

    DU Xiaochao, LIU Shuai, LIU Peng, et al. Numerical simulation of pipeline erosion of particulate matter in LBE based on DPM model[J]. Nuclear Power Engineering, 2021, 42(1): 48-53(in Chinese).

    [6] 周涛, 唐剑宇, 蒋屹. 基于灰色关联度的棒束通道内液态铅铋合金中颗粒物运动沉积研究[J]. 核技术, 2023, 46(7): 070603. doi: 10.11889/j.0253-3219.2023.hjs.46.070603

    ZHOU Tao, TANG Jianyu, JIANG Yi. Sedimentation movement of particles in liquid lead-bismuth alloy reactor core channel based on grey correlation degree[J]. Nuclear Techniques, 2023, 46(7): 070603(in Chinese). doi: 10.11889/j.0253-3219.2023.hjs.46.070603

    [7]

    PACIO J, DAUBNER M, FELLMOSER F, et al. Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers[J]. Nuclear Engineering and Design, 2016, 301: 111-127. doi: 10.1016/j.nucengdes.2016.03.003

    [8]

    PACIO J, WETZEL T, DOOLAARD H, et al. Thermal-hydraulic study of the LBE-cooled fuel assembly in the MYRRHA reactor: Experiments and simulations[J]. Nuclear Engineering and Design, 2017, 312: 327-337. doi: 10.1016/j.nucengdes.2016.08.023

    [9] 王俊杰. 铅铋冷却绕丝燃料组件热工水力及流致振动特性分析[D]. 上海: 上海交通大学, 2022.
    [10]

    LI J, XIAO Y, DING G, et al. Numerical analysis of the three-dimensional flow phenomena in a 19-pin wire-wrapped tight lattice bundle[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123319. doi: 10.1016/j.ijheatmasstransfer.2022.123319

    [11]

    MORITA K, MASCHEK W, FLAD M, et al. Thermophysical properties of lead-bismuth eutectic alloy in reactor safety analyses[J]. Journal of Nuclear Science and Technology, 2006, 43(5): 526-536. doi: 10.1080/18811248.2006.9711131

    [12] 苏子威, 周涛, 刘梦影, 等. 液态铅铋合金热物性研究[J]. 核技术, 2013, 36(9): 090205. doi: 10.11889/j.0253-3219.2013.hjs.36.090205

    SU Ziwei, ZHOU Tao, LIU Mengying, et al. Thermophysical properties of liquid lead-bismuth eutectic[J]. Nuclear Techniques, 2013, 36(9): 090205(in Chinese). doi: 10.11889/j.0253-3219.2013.hjs.36.090205

    [13]

    CHAI X, LIU X, XIONG J, et al. CFD analysis of flow blockage phenomena in a LBE-cooled 19-pin wire-wrapped rod bundle[J]. Nuclear Engineering and Design, 2019, 344: 107-121. doi: 10.1016/j.nucengdes.2019.01.019

    [14]

    CHENG X, TAK N I. Investigation on turbulent heat transfer to lead-bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006

    [15] 葛志浩. 液态金属湍流换热的直接数值模拟研究[D]. 合肥: 中国科学技术大学, 2018.
    [16]

    KONSTANDOPOULOS A G. Particle sticking/rebound criteria at oblique impact[J]. Journal of Aerosol Science, 2006, 37(3): 292-305.

    [17]

    BRACH R M, DUNN P F. A mathematical model of the impact and adhesion of microsphers[J]. Aerosol Science and Technology, 1992, 16(1): 51-64. doi: 10.1080/02786829208959537

    [18]

    EDWARDS J, MCLAURY B, SHIRAZI S. Evaluation of alternative pipe bend fittings in erosive service[R]. USA: Fluids Engineering Division, American Society of Mechanical Engineers, 2000.

    [19]

    NJOBUENWU D O, FAIRWEATHER M. Modelling of pipe bend erosion by dilute particle suspensions[J]. Computers & Chemical Engineering, 2012, 42: 235-247.

    [20]

    PARSI M, NAJMI K, NAJAFIFARD F, et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 850-873. doi: 10.1016/j.jngse.2014.10.001

    [21]

    PEREIRA G C, de SOUZA F J, de MARTINS D A M. Numerical prediction of the erosion due to particles in elbows[J]. Powder Technology, 2014, 261: 105-117. doi: 10.1016/j.powtec.2014.04.033

图(19)  /  表(3)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  4
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 修回日期:  2024-08-13
  • 网络出版日期:  2024-12-18
  • 刊出日期:  2025-03-19

目录

    /

    返回文章
    返回