Research on Fast Search Method of Rod Position in Peak Load Regulation of PWR Based on Convolutional Neural Network
-
摘要:
为减少目前国内压水堆核电站调峰过程中操纵员的决策风险和人因风险,实现辅助操纵员进行调峰或一定程度上的自动化调峰的目的,本文基于卷积神经网络,研究了压水堆核电站调峰过程控制棒棒位快速搜索方法。首先采用Inception-ResNet结构搭建卷积神经网络,并通过核电站调峰过程轴向功率偏移(AO)实测数据和堆芯物理计算软件LOCUST/SPARK计算的堆芯工况参数进行网络训练,建立了快速、高精度的AO预测模型;然后基于该AO预测模型,建立了调峰过程控制棒棒位快速搜索方法;最后采用我国某商用压水堆核电站M310机组共26次调峰过程的实测数据完成了上述方法的数值验证。验证结果表明:本文建立的AO预测模型,预测AO与实测AO之间的偏差平均值为−0.084%,95%置信区间为[−1.746%,1.578%],且每次AO预测仅需约40 ms;在预测AO与目标AO误差不超过1%的条件下,根据控制棒棒位快速搜索方法搜索到的R棒棒位与实际棒位非常接近,最大误差3步,具有很高的预测精度。本文建立的压水堆核电站调峰过程控制棒位快速搜索方法能够实现调峰过程中控制棒棒位快速、准确地搜索,具备工程应用前景。
-
关键词:
- 卷积神经网络 ,
- 调峰 ,
- 轴向功率偏移 ,
- LOCUST/SPARK软件
Abstract:The rapid expansion of nuclear power in China has led to a significant increase in both operational and under-construction reactor capacity. To ensure grid stability and efficient power consumption, nuclear power plants must engage in peak load regulation. The nuclear reactor core represents a complex, nonlinear, and multivariable coupled system. During peak load regulation, the core’s poisons oscillate heavily, leading to axial offset (AO), which in turn affects core safety. Currently, pressurized water reactors (PWRs) in China predominantly implement constant axial offset control (CAOC) strategy during peak load regulation periods. Therefore, to achieve constant AO operation, it is essential to control the AO by adjusting the control rod to ensure the safety of the reactor. However, during the current peak load regulation processes, discrepancies between the AO values calculated by core physics software and those measured in practice hinder operators from strictly adhering to predetermined regulation plans. Consequently, the actual process relies heavily on operators’ personal experience, which introduces decision-making and human-factor risks, and is not conducive to core safety. In order to reduce decision-making and human-factor risks for operators during peak load regulation in Chinese PWR nuclear power plants, and to achieve the purpose of assisting operators during peak load regulation or partial automating peak load regulation, this paper investigated a fast search method for control rod positions of PWR nuclear power plants based on convolutional neural networks (CNN). The Inception-ResNet structure was used to build the CNN, which was trained using measured AO data from the peak load regulation process and core operational parameters generated by the core physics software LOCUST/SPARK. A high-precision AO prediction model was developed, followed by a fast control rod position search method during peak load regulation. The method was validated using data from 26 peak load regulation processes of the M310 unit at a commercial PWR in China. The verification results indicate that the average deviation between the measured AO and the predicted AO values for the AO prediction model developed in this study is −0.084%. The average absolute deviation is 0.591%, the root mean square deviation is 0.836%, with the 95% confidence interval of [−1.746%, 1.578%]. Each AO prediction takes approximately 40 ms. When the error between the predicted AO and the target AO does not exceed 1%, the predicted R rod position closely matches the actual position, with a maximum error of only 3 steps. The proposed method demonstrates high accuracy in predicting rod positions during peak load regulation. Therefore, this fast search method for control rod positions during peak load regulation achieves both rapid and accurate results, supporting operators or enabling partial automation of peak load regulation, and shows potential for practical engineering applications.
-
近年来我国核电事业迅猛发展,截至2023年底,中国大陆在运核电机组达到55台,装机容量为53 152 MW;在建核电机组24台,装机容量为24 948 MW[1]。核电的快速增长一方面提供了更多的清洁能源,有利于能源结构的优化;另一方面为了保障电网稳定运行和电力消纳,核电站必须进行相应的调峰[2],目前国内大多数核电机组已经在根据电网调度频繁参与调峰[3-5]。
核反应堆堆芯是一个复杂的非线性和多变量耦合的系统,不同状态变量之间存在强烈的相互作用[6]。在调峰过程中,堆芯的毒物会发生振荡,导致轴向功率偏移(AO),AO偏离运行区间影响堆芯安全[7-8]。目前国内压水堆核电站在调峰期间普遍采用常AO控制[9]模式,因此为了实现在调峰过程中常AO运行的目标,需要通过调整控制棒棒位来控制AO,以保障机组运行的安全性。
为了在调峰过程中将AO控制在允许和安全的范围内,许多学者进行了大量研究。Kolali等[10]利用所开发的中子/热工水力模拟器进行调峰期间的数值模拟,将模拟结果与程序计算结果进行比较,结果显示调峰期间的AO被控制在了允许和安全的范围内。Wan等[11]提出了一种基于神经网络的变论域模糊控制器,用于反应堆功率和轴向功率分布的控制,与传统控制器相比,其控制性能得到了有效的改善。Ansarifar等[12]通过一种SMC控制器进行模拟,对氙震荡进行控制,来限制功率变化期间功率分布不均匀性和AO。Boroushaki等[13]研究通过神经网络模型预测堆芯的动态行为,并根据操纵员的知识和经验建立模糊评判来进行调峰期间的决策,仿真结果表明该方法提高了机组的负荷跟踪能力。Nejad等[14]提出了一种基于中子和热工水力学的多点动力学反应堆模型的ARFLC方法,用来控制堆芯功率和氙毒的有界震荡,并取得了一定效果。然而,上述方法主要侧重于一些自动控制方法的研究和数值模拟,在目前我国压水堆核电站调峰过程中的控制棒棒位手动控制过程中并不完全适用。
目前,国内压水堆核电站调峰,一般通过堆芯物理软件计算不同时刻棒位或硼浓度的方式向主控操纵员提供调峰控制方案。然而,堆芯物理软件AO计算结果与实际AO本身存在偏差;调峰过程中棒位和毒物等堆芯实际参数与堆芯物理软件计算参数的偏离可能会加剧调峰过程中的AO偏差;堆外探测器的校刻系数确定一般都是在满功率状态进行的,在调峰过程中的其他功率水平下,校刻系数指示的功率可能会存在偏差[15-16]。这些都可能加剧堆芯物理软件的AO计算结果与实际AO偏差,导致操纵员无法严格按照预定调峰方案执行,不利于操纵员在调峰过程中对棒位和AO的控制。实际调峰过程比较依赖操纵员的个人经验,容易产生决策风险和人因风险[17],不利于堆芯安全。
目前,机器学习凭借其独特的优势广泛应用于核能领域,在堆芯功率预测[18]、数字孪生[19]、核电站瞬态事故诊断[20]、堆芯中子通量密度及有效增殖因数预测[21]和堆芯控制[22]等众多方面展现了其显著的优势。为了解决上述调峰过程中存在的问题,本文通过机器学习建立堆芯参数与电厂实测AO之间的联系,然后提出控制棒棒位快速搜索方法。
本文通过Inception-ResNet结构搭建卷积神经网络(CNN)模型,并通过电厂调峰过程的AO实测值和堆芯物理计算软件LOCUST/SPARK[23]计算得到的堆芯工况参数进行训练,建立快速、高精度的AO预测模型。基于该AO预测模型建立调峰过程控制棒棒位快速搜索方法,对将要调峰阶段的AO进行预测,并进行相应的控制棒棒位搜索,以确定调峰过程中的棒位。在满足AO的范围要求、确保堆芯安全的前提下,实现调峰过程棒位快速搜索。
1. 卷积神经网络AO预测模型
CNN作为深度学习的一大热点,具有自动特征提取、参数共享减少训练参数数量、局部连接有效捕捉空间层次结构、计算高效、对平移缩放等变换具有一定鲁棒性、适应性广泛等诸多优势[24]。CNN通常由输入层、卷积层、池化层、全连接层和输出层等组成,基本结构如图1所示。其核心特点在于卷积操作,即在输入层之间移动一个小滤波器(也称卷积核),执行逐元素的乘法和求和,从输入数据中提取基本特征[25]。卷积的主要意义在于它能够有效捕获输入数据中的局部信息和空间关系。这使得CNN非常适合于图像识别和空间信息捕捉等任务[24]。AO与堆芯空间参数,特别是毒物空间分布、燃耗空间分布等强相关,利用CNN模型计算AO就是一种空间信息提取的过程,而CNN模型在此类任务中非常有优势。
1.1 卷积神经网络模型构建
结合GoogLeNet(Inception)[26]和Residual Network(ResNet)[27]优势的强大架构Inception-ResNet[28-29],既可通过快捷连接绕过1个或多个层,解决梯度消失的问题,允许网络变得更深而不丧失学习能力,使网络能够更有效地学习复杂的模式,从而提高准确性;也能有效利用计算资源,平衡网络深度和计算效率,使其适用于多种实际情境。因此,本文基于Inception-ResNet结构构建CNN AO预测模型,模型整体结构如图2所示,Inception-ResNet模块结构组成如图3所示。
1.2 数据预处理
在压水堆核电站调峰过程中,影响AO的主要特征参数包括功率、燃料富集度、燃料组件中可燃毒物棒数量、控制棒棒位、燃耗分布、毒物分布等,其中调峰这种堆芯动态变化过程中的Xe、Sm等中子毒物的变化与AO关系密切。因此,本文结合核电站实测数据和软件计算数据,共同参与CNN模型的训练。其中实测数据包括功率、燃料富集度、燃料组件中可燃毒物棒数量、R棒棒位、G1棒棒位、G2棒棒位、N1棒棒位、N2棒棒位;软件计算数据由堆芯物理计算软件LOCUST/SPARK[23]计算得到,包括燃耗分布、轴向Xe分布、轴向Sm分布、径向Xe分布、径向Sm分布。上述总共13个数据作为神经网络的输入参数,以实测数据中的AO作为对应的神经网络的输出参数。其中轴向Xe、Sm分布为轴向每一层的Xe、Sm毒物总量,共34层;径向Xe、Sm分布为径向每个燃料组件中Xe、Sm毒物总量。每组训练数据包含上述13个输入数据和1个输出数据。
以M310机组为例,堆芯为15×15组件布置,因此每个输入数据均对应于1个15×15的矩阵,矩阵中无数据的空缺处补0,即每组输入数据对应于1个15×15×13的张量。图4为某组输入数据的可视化示意图,其中颜色深浅代表不同数值的大小。
为了减小数据量纲影响、抑制梯度爆炸或消失、加速模型收敛、提高稳定性,本文对输入、输出所有数据做归一化处理。归一化方法为:
ˆX=X−Xmin (1) 式中: \widehat X 为归一化后的数据;X为原始数据;Xmax为最大值;Xmin为最小值。
1.3 模型训练
本文基于Tensorflow和keras搭建神经网络模型,激活函数选用ReLU函数,并采用Adam算法[30]进行参数更新。算法中一阶矩估计的衰减率为0.9,二阶矩估计的衰减率为0.999,初始学习率为0.000 1,衰减策略选择阶梯衰减,衰减率为0.98,衰减步数为1 000。训练过程中,将数据进行随机打乱,然后按照8∶1∶1的比例将数据集划分成训练集、验证集和测试集,前两者用于参数的训练和调优,后者用于评价模型的性能和泛化能力。训练过程中采用小批量训练,批量大小为128,每次随机选用数据集中的1个小批量数据,当数据集中所有数据被使用1次称为1轮(epoch)训练,这样可以平衡批处理的效率和1次使用多个样本的降噪效果。
训练过程中,以均方差(MSE)作为损失函数和训练指标,以预测AO与实测AO的绝对误差作为分析指标。损失函数Loss计算公式为:
{L}_{{\mathrm{batch}},j}=\frac{1}{{n}}{\displaystyle \sum _{i=1}^{n}{({{y}}_{i}-{\widehat{{y}}}_{i})}^{2}} (2) {\text{Loss}} = \frac{1}{{{m}}}\sum\limits_{j = 1}^m {{L_{{\mathrm{batch}},j}}} (3) 式中: {L_{{\mathrm{batch}},j}} 为1轮训练中第j批次的损失函数;n为该批次的样本数量;yi为该批次中第i个样本的真实值; {\widehat {{y}}_i} 为模型对该批次中第i个样本的预测值;m为1轮训练中的总批次数。
绝对误差Error计算公式为:
{\mathrm{Erro}}{{\mathrm{r}}_{{\mathrm{batch}},j}} = \frac{1}{n}\sum\limits_{i = 1}^n {\left| {{{{y}}_i} - {{\widehat {{y}}}_i}} \right|} (4) {\mathrm{Error}} = \frac{1}{m}\sum\limits_{{{j}} = 1}^m {{\mathrm{Erro}}{{\mathrm{r}}_{{\mathrm{batch}},j}}} (5) 式中, {\mathrm{Erro}}{{\mathrm{r}}_{{\mathrm{batch}},j}} 为1轮训练中第j批次的绝对误差。
图5为某次训练过程中训练集、验证集和测试集的损失函数和绝对误差的变化。由图5可看出:损失函数和绝对误差下降迅速,收敛平滑,并最终接近于0;训练集、验证集和测试集的曲线之间未出现明显分离,表明模型预测精度较高,无明显过拟合现象。
2. AO预测模型数值验证
本文以国内某M310机组某循环共26段调峰数据作为样本,在每段调峰过程中每间隔4 min取1步数据,共计取得18 230步,每步包含13个输入数据和1个输出数据,它们共同组成1组训练数据。在预测某段调峰过程AO时,以26段调峰数据中的其余25段数据用于模型训练,然后将模型参数应用于剩下的一段调峰过程中的AO预测。将模型预测的AO与实测AO进行对比验证,并进行偏差统计。本文在该机组整个寿期26段调峰中,从调峰初期开始以约2个月时间间隔选取了整个调峰跨度内初期、中期、末期中的4段调峰进行对比,对比结果如图6所示。对比结果表明,在调峰过程中AO预测值与实测值吻合良好,整体偏差较小,且都在一定的小范围内波动,模型的预测效果较好。
在26段调峰中以大约1个月的时间间隔随机选取9段,对预测AO与实测AO的偏差进行汇总,AO偏差统计直方图如图7所示,偏差统计列于表1。图7中横轴表示AO偏差区间,纵轴表示各区间内的数据数量,红色曲线是高斯拟合曲线,显示数据的整体分布。由图7可看出,偏差主要集中在中间,即0附近,趋向两侧,数量减少,呈现典型钟形,符合正态分布的特征。由表1可看出,平均偏差、平均绝对偏差、标准差和均方根偏差都相对较小,且95%的置信区间为[−1.746%,1.578%]。因此,该模型具有非常高的预测精度。此外,每次调峰AO预测时间仅约为40 ms,满足调峰过程对AO预测的速度需求。
表 1 偏差统计表Table 1. Statistic table of deviation统计参数 统计值 平均偏差 −0.084% 平均绝对偏差 0.591% 标准差 0.831% 均方根偏差 0.836% 95%置信区间 −1.746%~1.578% 3. 棒位快速搜索方法及验证
3.1 方法概述
在压水堆核电站调峰过程中,主控操纵员主要通过调节硼浓度和控制棒棒位的方式实现功率调节和AO控制。其中硼浓度对AO影响相对较小[31],因此控制棒除了负责功率调节,更要承担AO控制的任务。本文基于上述AO预测模型,对调峰过程中的AO进行预测,然后进行控制棒棒位搜索。
每次调峰前的预知信息只有调峰指令中功率随时间的变化过程和目标AO。通过棒位、毒物和燃耗迭代更新使预测AO与目标AO的误差、当前棒位与上一步棒位的误差满足收敛限要求,最终确定R棒棒位。将搜索到的R棒棒位与实际棒位进行对比,验证棒位快速搜索方法在工程应用中的可行性。其中,根据常AO运行的相关要求[32],实际AO应该控制在目标AO±5%的区间内,所以预测AO与目标AO的误差收敛限必须小于5%。本方法实施步骤整体示意图如图8所示。
3.2 数值验证及分析
以国内某M310机组2023年1月第1段调峰和2023年2月第4段调峰为例,基于本文提出的CNN AO预测模型对调峰过程中的AO进行预测,并进行R棒棒位搜索,使预测AO与目标AO(本例中以该段调峰中实测AO作为目标AO)误差小于1%、该次搜索到的棒位与上次搜索到的棒位(或初始棒位)的误差小于2步,最终确定R棒棒位。
具体实施步骤如下:1) 根据电网调峰指令中功率随时间的变化过程,在降功率和升功率阶段每隔20 min选取1个目标点,功率平稳阶段每隔1 h选取1个目标点;2) 使用LOCUST/SPARK计算堆芯Xe、Sm分布和燃耗分布需要控制棒棒位,将每个目标点的R棒初始棒位设置为运行中带位置,后续进行迭代更新;3) 通过LOCUST/SPARK进行计算,获得当前棒位条件下所有目标点的Xe、Sm分布和燃耗分布;4) 根据上一步中得到的毒物分布、燃耗分布和功率、棒位等信息制作AO预测模型输入文件,并根据预测模型计算对应目标点的预测AO;5) 通过搜索不同位置的R棒棒位来调整预测AO,使之与目标AO靠近,进而使二者误差满足收敛限要求;6) 将得到的R棒棒位带回入第3步,通过LOCUST/SPARK更新毒物和燃耗,重新得到所有点的Xe、Sm分布和燃耗分布;7) 重复第4~6步,重新搜索R棒棒位,直到预测AO与目标AO的误差、当前搜索到的R棒棒位与上一步搜索到的R棒棒位(或初始棒位)的误差满足要求。
按照上述具体实施步骤执行,得到最终满足要求的搜索到的R棒棒位和预测AO,将其与该段实际调峰过程中的真实R棒棒位和实测AO进行对比,其中2023年1月第1段调峰的对比结果如图9所示,2023年2月第4段调峰的对比结果如图10所示。
由图9、10可看出:根据上述控制棒棒位快速搜索方法,在预测AO与目标AO吻合良好、最大误差不超过1%的条件下,搜索到的R棒棒位与真实棒位非常接近,最大误差只有3步,且大多分布在调峰过程中部功率稳定阶段,而在功率快速变化阶段误差相对较小,有利于调峰过程中功率快速变化阶段的AO控制和棒位调节,可以达到辅助操纵员进行调峰或一定程度上的自动化调峰的目的。
4. 结论
本文基于Inception-ResNet结构搭建了CNN AO预测模型,并以国内某M310机组为样本进行了AO预测,数值验证结果表明该模型能够快速且高精度地进行AO预测,预测AO与实测AO偏差的平均值仅为−0.084%,95%置信区间为[−1.746%,1.578%]。
基于上述模型提出了棒位快速搜索方法,并以某M310机组2023年1月第1段调峰和2023年2月第4段调峰为例进行了数值验证。验证结果表明:在预测AO与目标AO吻合良好、最大误差不超过1%的条件下,搜索到的R棒棒位与真实棒位非常接近,最大误差只有3步。上述结果表明该方法具有一定的工程应用价值,方便操纵员在调峰时快速且准确地判定R棒棒位,精确地进行AO控制,减少了中间过程的决策风险与人因风险,既能够满足调峰需求,又能够保证堆芯安全,能够达到辅助操纵员进行调峰或一定程度上的自动化调峰的目的。
-
表 1 偏差统计表
Table 1 Statistic table of deviation
统计参数 统计值 平均偏差 −0.084% 平均绝对偏差 0.591% 标准差 0.831% 均方根偏差 0.836% 95%置信区间 −1.746%~1.578% -
[1] IAEA. Nuclear power reactors in the world, reference data series No. 2, 2024 edition[EB/OL]. https://www.iaea.org/publications/15748/nuclear-power-reactors-in-the-world.
[2] 赵洁, 刘涤尘, 雷庆生, 等. 核电机组参与电网调峰及与抽水蓄能电站联合运行研究[J]. 中国电机工程学报, 2011, 31(7): 1-6. ZHAO Jie, LIU Dichen, LEI Qingsheng, et al. Analysis of nuclear power plant participating in peak load regulation of power grid and combined operation with pumped storage power plant[J]. Proceedings of the CSEE, 2011, 31(7): 1-6(in Chinese).
[3] 郑宽, 王轶禹, 王耀华, 等. “十三五” 期间核电参与电网调峰前景分析[J]. 中国电力, 2017, 50(1): 49-55. ZHENG Kuan, WANG Yiyu, WANG Yaohua, et al. Analysis on the load following prospect of nuclear power in China in the period of “13th five-year”[J]. Electric Power, 2017, 50(1): 49-55(in Chinese).
[4] 陈伟. 核电机组参与电网调峰的运行方式及效益分析[J]. 中国高新技术企业, 2016(14): 137-138. CHEN Wei. Operation mode and benefit analysis of nuclear power unit participating in peak shaving of power grid[J]. China High-Tech Enterprises, 2016(14): 137-138(in Chinese).
[5] 王骏. 考虑核电调峰运行的电力系统优化调度模型研究[D]. 武汉: 武汉大学, 2018. [6] 李向阳, 李玮玮, 陈亮, 等. 核电厂调峰反应堆堆芯主要特性研究[J]. 科技创新导报, 2019, 16(28): 11-13. LI Xiangyang, LI Weiwei, CHEN Liang, et al. Study on main characteristics of peak shaving reactor core in nuclear power plant[J]. Science and Technology Innovation Herald, 2019, 16(28): 11-13(in Chinese).
[7] 刘建新. 压水堆核电站负荷跟踪反应堆功率智能控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. [8] ELIASI H , MENHAJ M B , DAVILU H . Robust nonlinear model predictive control for nuclear power plants in load following operations with bounded xenon oscillations[J]. Nuclear Engineering and Design, 2011, 241(2): 533-543.
[9] 穆铁钢. 核反应堆功率分布与功率控制协调方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. [10] KOLALI A, NAGHAVI D D, GHAFARI M, et al. Axial-offset analysis in iPWR by developing the neutronic/thermal-hydraulic core simulator based on coarse-mesh methods[J]. Annals of Nuclear Energy, 2023, 181: 109566. doi: 10.1016/j.anucene.2022.109566
[11] WAN J, JIANG Q, LIAO L, et al. A neural-network based variable universe fuzzy control method for power and axial power distribution control of large pressurized water reactors[J]. Annals of Nuclear Energy, 2022, 175: 109241. doi: 10.1016/j.anucene.2022.109241
[12] ANSARIFAR G R, SAADATZI S. Nonlinear control for core power of pressurized water nuclear reactors using constant axial offset strategy[J]. Nuclear Engineering and Technology, 2015, 47(7): 838-848. doi: 10.1016/j.net.2015.09.002
[13] BOROUSHAKI M, GHOFRANI M B, LUCAS C, et al. Axial offset control of PWR nuclear reactor core using intelligent techniques[J]. Nuclear Engineering and Design, 2004, 227(3): 285-300. doi: 10.1016/j.nucengdes.2003.11.002
[14] NEJAD M Z, ANSARIFAR G R, RISHEHRI H Z. Online parameter adaptation of pressurized water reactor during load-following operation with bounded axial power distribution via Lyapunov approach[J]. Nuclear Engineering and Design, 2024, doi: 10.1016/j.nucengdes.2024.113067.
[15] 任意. 三代压水堆堆外核测仪表调试方案研究与设计[J]. 自动化仪表, 2021, 42(增刊1): 237-241. REN Yi. Study and design of commissioning scheme of ex-core nuclear measuring instrument for third-generation pressurized water reactor[J]. Process Automation Instrumentation, 2021, 42(Suppl.1): 237-241(in Chinese).
[16] 白家赫, 杨灏哲, 万承辉, 等. 压水堆堆外核仪表系统单点校刻法研究及应用[J]. 核动力工程, 2023, 44(4): 25-32. BAI Jiahe, YANG Haozhe, WAN Chenghui, et al. Research and application of single-point calibration method for ex-core nuclear instrument system of PWRs[J]. Nuclear Power Engineering, 2023, 44(4): 25-32(in Chinese).
[17] 刘雪阳, 张力, 邹衍华. 核电厂功率快速变化下操纵员任务分析[J]. 核动力工程, 2019, 40(5): 165-169. LIU Xueyang, ZHANG Li, ZOU Yanhua. Analysis of operator’s task under rapid power change in nuclear power plants[J]. Nuclear Power Engineering, 2019, 40(5): 165-169(in Chinese).
[18] 肖凯, 黎婧, 赵梦薇, 等. 小型压水堆功率神经网络预测控制研究[J]. 核动力工程, 2020, 41(增刊2): 50-53. XIAO Kai, LI Jing, ZHAO Mengwei, et al. Research on neural network predictive control of small pressurized water reactor[J]. Nuclear Power Engineering, 2020, 41(Suppl. 2): 50-53(in Chinese).
[19] GONG H, CHENG S, CHEN Z, et al. An efficient digital twin based on machine learning SVD autoencoder and generalised latent assimilation for nuclear reactor physics[J]. Annals of Nuclear Energy, 2022, 179: 109431. doi: 10.1016/j.anucene.2022.109431
[20] SANTOSH T V, VINOD G, SARAF R K, et al. Application of artificial neural networks to nuclear power plant transient diagnosis[J]. Reliability Engineering & System Safety, 2007, 92(10): 1468-1472.
[21] 张海明. 基于深度学习的压水堆堆芯中子通量密度及有效增殖系数预测[D]. 哈尔滨: 哈尔滨工业大学, 2022. [22] BOROUSHAKI M, GHOFRANI M B, LUCAS C, et al. Identification and control of a nuclear reactor core (VVER) using recurrent neural networks and fuzzy systems[J]. IEEE Transactions on Nuclear Science, 2003, 50(1): 159-174. doi: 10.1109/TNS.2002.807856
[23] 万承辉, 李云召, 郑友琦, 等. 压水堆燃料管理软件Bamboo-C研发及工业确认[J]. 核动力工程, 2021, 42(5): 15-22. WAN Chenghui, LI Yunzhao, ZHENG Youqi, et al. Code development and engineering validation of PWR fuel management software Bamboo-C[J]. Nuclear Power Engineering, 2021, 42(5): 15-22(in Chinese).
[24] YOUNESI A, ANSARI M, FAZLI M, et al. A comprehensive survey of convolutions in deep learning: Applications, challenges, and future trends[J]. IEEE Access, 2024, 12: 41180-41218. doi: 10.1109/ACCESS.2024.3376441
[25] ZHAO X, WANG L, ZHANG Y, et al. A review of convolutional neural networks in computer vision[J]. Artificial Intelligence Review, 2024, 57(4): 99. doi: 10.1007/s10462-024-10721-6
[26] KHAN R U, ZHANG X, KUMAR R. Analysis of ResNet and GoogleNet models for malware detection[J]. Journal of Computer Virology and Hacking Techniques, 2019, 15(1): 29-37. doi: 10.1007/s11416-018-0324-z
[27] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). USA: IEEE, 2016: 770-778.
[28] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, doi: 10.48550/arXiv.1602.07261.
[29] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [S. l.]: [s. n.], 2016.
[30] RAIAAN M A K, SAKIB S, FAHAD N M, et al. A systematic review of hyperparameter optimization techniques in convolutional neural networks[J]. Decision Analytics Journal, 2024, 11: 100470. doi: 10.1016/j.dajour.2024.100470
[31] 刘国明, 肖会文, 别业旺, 等. CNP600堆芯调峰运行时轴向功率偏差影响因素及控制策略研究[J]. 原子能科学技术, 2016, 50(7): 1256-1263. doi: 10.7538/yzk.2016.50.07.1256 LIU Guoming, XIAO Huiwen, BIE Yewang, et al. Study on influence factor and control strategy of axial power difference in peak load operation of CNP600 core[J]. Atomic Energy Science and Technology, 2016, 50(7): 1256-1263(in Chinese). doi: 10.7538/yzk.2016.50.07.1256
[32] SIPUSH P J, KERR R A, GINSBERG A P, et al. Load-follow demonstrations employing constant axial offset power-distribution control procedures[J]. Nuclear Technology, 1976, 31(1): 12-31. doi: 10.13182/NT76-A31695