反应堆核-热-燃耗多物理耦合框架研究与应用

吴明宇, 朱迎, 卢旭, 苗雪, 吴宗芸, 李龙, 胡赟, 赵民富

吴明宇, 朱迎, 卢旭, 苗雪, 吴宗芸, 李龙, 胡赟, 赵民富. 反应堆核-热-燃耗多物理耦合框架研究与应用[J]. 原子能科学技术, 2021, 55(9): 1643-1649. DOI: 10.7538/yzk.2021.youxian.0312
引用本文: 吴明宇, 朱迎, 卢旭, 苗雪, 吴宗芸, 李龙, 胡赟, 赵民富. 反应堆核-热-燃耗多物理耦合框架研究与应用[J]. 原子能科学技术, 2021, 55(9): 1643-1649. DOI: 10.7538/yzk.2021.youxian.0312
WU Mingyu, ZHU Ying, LU Xu, MIAO Xue, WU Zongyun, LI Long, HU Yun, ZHAO Minfu. Research and Application of Nuclear-thermal-burnup Multi-physics Coupling Architecture[J]. Atomic Energy Science and Technology, 2021, 55(9): 1643-1649. DOI: 10.7538/yzk.2021.youxian.0312
Citation: WU Mingyu, ZHU Ying, LU Xu, MIAO Xue, WU Zongyun, LI Long, HU Yun, ZHAO Minfu. Research and Application of Nuclear-thermal-burnup Multi-physics Coupling Architecture[J]. Atomic Energy Science and Technology, 2021, 55(9): 1643-1649. DOI: 10.7538/yzk.2021.youxian.0312

反应堆核-热-燃耗多物理耦合框架研究与应用

Research and Application of Nuclear-thermal-burnup Multi-physics Coupling Architecture

  • 摘要: 近年来随着高性能计算技术的不断发展,依托先进的超级计算机和数学物理计算方法,对核反应堆开展多物理、多尺度计算成为前沿研究热点。根据反应堆堆芯多物理耦合分析需求,研究了多物理耦合算法,构建了基于中子输运、燃耗、热工子通道的堆芯多物理耦合系统,完成耦合程序开发,实现中子物理、燃耗、热工子通道的多物理耦合计算。利用压水堆组件模型与快堆模型开展输运-燃耗耦合计算测试和核-热耦合计算测试,初步验证了耦合系统功能。

     

    Abstract: In recent years, with the continuous development of high performance computing technology, relying on advanced supercomputers and mathematical physics calculation methods, multi-physical and multi-scale calculation of nuclear reactor become a hot research topic. According to the requirements of multi-physical coupling analysis of reactor core, the multi-physical coupling algorithm was studied, the multi-physical coupling system of reactor core based on neutron transport, burnup and thermal sub-channel was constructed, and the coupling program was developed. Multi-physical coupling calculation of neutron physics, burnup and thermal sub-channels was realized. The pressurized water reactor module model and the fast reactor model were used to carry out the transport-burnup coupling calculation test and the nuclear-thermal coupling calculation test, and the coupling system function is preliminarily verified.

     

  • [1] GASTON D, NEWMAN C, HANSEN G, et al. MOOSE: A parallel computational framework for coupled systems of nonlinear equations[J]. Nuclear Engineering and Design, 2009, 239(10): 1768-1778.
    [2] 邓力,史敦福,李刚. 数值反应堆多物理耦合关键技术[J]. 计算物理,2016,33(6):631-638.
    DENG Li, SHI Dunfu, LI Gang. Key technologies of coupling for multiphysics in numerical reactor[J]. Chinese Journal of Computational Physics, 2016, 33(6): 631-638(in Chinese).
    [3] 张汉,郭炯,周夏峰,等. 基于有限差分Newton-Krylov方法的中子-热工联立求解[J]. 核动力工程,2014,36(6):18-23.
    ZHANG Han, GUO Jiong, ZHOU Xiafeng, et al. Simultaneous solution of neutron/thermal-hydraulic coupled system based on finite difference Newton-Krylov method[J]. Nuclear Power Engineering, 2014, 36(6): 18-23(in Chinese).
    [4] 安恒斌,莫则尧. JFNK方法迭代过程与物理约束[J]. 计算物理,2012,29(5):654-660.
    AN Hengbin, MO Zeyao. Iteration process of JFNK method and physical constraints[J]. Chinese Journal of Computational Physics, 2012, 29(5): 654-660(in Chinese).
    [5] GASTON D, NEWMAN C, HANSEN G, et al. MOOSE: A parallel computational framework for coupled systems of nonlinear equations[J]. Nuclear Engineering and Design, 2009, 239(10): 1768-1778.
    [6] NEWMAN C, HANSEN G, GASTON D. Three dimensional coupled simulation of thermomechanics, heat, and oxygen diffusion in UO2 nuclear fuel rods[J]. Journal of Nuclear Materials, 2009, 392(1): 6-15.
    [7] 孙嘉龙,余纲林,佘顶,等. 堆用蒙特卡罗程序几何重复结构功能开发[J]. 强激光与粒子束,2013,25(1):219-222.
    SUN Jialong, YU Ganglin, SHE Ding, et al. Development of repeat geometry function in reactor Monte Carlo code RMC[J]. High Power Laser and Particle Beams, 2013, 25(1): 219-222(in Chinese).
    [8] 丘意书,佘顶,范潇,等. 堆用蒙特卡罗程序RMC的全堆计算研究[J]. 核动力工程,2013,34(S1):1-4.
    QIU Yishu, SHE Ding, FAN Xiao, et al. Analysis of full-core calculation of RMC[J]. Nuclear Power Engineering, 2013, 34(S1): 1-4(in Chinese).
    [9] 梁金刚,丘意书,王侃,等. 基于计数器数据分解的RMC全堆燃耗计算研究[J]. 核动力工程,2014,35(S2):231-234.
    LIANG Jingang, QIU Yishu, WANG Kan, et al. Research of full core burnup calculations based on tally data decomposition in RMC[J]. Nuclear Power Engineering, 2014, 35(S2): 231-234(in Chinese).
    [10] HOOGENBOOM J E, MARTIN W R. A proposal for a benchmark to monitor the performance of detailed Monte Carlo calculation of power densities in a full size reactor core[C]∥Proceedings ANS Mathematics & Computation Division Topical Meeting. Saratoga Springs, NY: [s. n.], 2009.
    [11] 吴明宇,祁琳,赵民富,等. 反应堆多物理耦合计算中的核-热耦合计算研究[C]∥第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会论文集. 惠州:中国核学会,2019.
    [12] 王先梦,赵民富,吕玉凤,等. 一种全堆芯精确到每个通道的子通道并行模拟方法[J]. 原子能科学技术,2020,54(6):1108-1117.
    WANG Xianmeng, ZHAO Minfu, LYU Yufeng, et al. Parallel strategy for full-core and real-channel-resolved thermal-hydraulic subchannel simulation[J]. Atomic Energy Science and Technology, 2020, 54(6): 1108-1117(in Chinese).
    [13] 马晓,林超,李淞,等. 钠冷快堆乏燃料组件热工水力分析程序开发[J]. 原子能科学技术,2020,54(4):606-614.
    MA Xiao, LIN Chao, LI Song, et al. Development of thermal-hydraulic analysis code for spent fuel assembly of sodium cooled fast reactor[J]. Atomic Energy Science and Technology, 2020, 54(4): 606-614(in Chinese).
    [14] 周志伟,杨红义,李淞,等. CFR600堆芯热工水力设计程序初步研发[J]. 原子能科学技术,2018,52(1):56-63.
    ZHOU Zhiwei, YANG Hongyi, LI Song, et al. Primary development of thermal-hydraulics design code for CFR600 core[J]. Atomic Energy Science and Technology, 2018, 52(1): 56-63(in Chinese).
  • 期刊类型引用(3)

    1. 杨军,孙培杰,彭翠婷,胡梦岩,黄茜,张祎轩,黄宇航,罗志鹏,徐乐瑾. 世界核能科技发展前沿进展. 科技导报. 2024(23): 7-30 . 百度学术
    2. 潘俊杰,曾未,强胜龙,汤琪芬,李治刚. 基于耦合框架的多通道程序网格与接口模块开发. 原子能科学技术. 2022(S1): 32-41 . 本站查看
    3. 杨文,胡长军,刘天才,吴明宇,王昭顺,姜强. 数值反应堆原型系统开发及示范应用研究进展. 原子能科学技术. 2021(09): 1537-1546 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  432
  • HTML全文浏览量:  5
  • PDF下载量:  1035
  • 被引次数: 3
出版历程
  • 刊出日期:  2021-09-19

目录

    /

    返回文章
    返回