JI Xiao-chun, LUO Jiang-shan, LI Xi-bo, WU Xiao-qiang. Preparation and Structure of Ti Nanoparticles by Flow-Levitation Method[J]. Atomic Energy Science and Technology, 2012, 46(12): 1522-1526. DOI: 10.7538/yzk.2012.46.12.1522
Citation: JI Xiao-chun, LUO Jiang-shan, LI Xi-bo, WU Xiao-qiang. Preparation and Structure of Ti Nanoparticles by Flow-Levitation Method[J]. Atomic Energy Science and Technology, 2012, 46(12): 1522-1526. DOI: 10.7538/yzk.2012.46.12.1522

Preparation and Structure of Ti Nanoparticles by Flow-Levitation Method

More Information
  • Ti nanoparticles were prepared by flow-levitation method. The morphologies,granularities, structure and properties of Ti nanoparticles were investigated by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The results show that the particles prepared by flow-levitation method are spherical and the average sizes gradually decreases with the increase of Ar flow rate. Under the flow rates of 0.6, 0.8 and 1.0 m3/h, Ti nanoparticles with the average sizes of 59, 50 and 41 nm are obtained. In the air, Ti nanoparticles mainly react with O.2 and form stable TiO2. Meanwhile, Ti nanoparticles react with N2 and vapor in the air, and a small amount of nitride and hydroxyl group were found.
  • [1]
    唐永建,罗江山,雷海乐,等. ICF靶中的纳米金属功能材料研究进展[J]. 原子能科学技术,2009,43(增刊):109-115.TANG Yongjian, LUO Jiangshan, LEI Haile, et al. Research progress of metallic function nanomaterials for inertial confinement fusion targets[J]. Atomic Energy Science and Technology, 2009, 43(Suppl.): 109-115(in Chinese).
    [2]
    吴栋,韦建军,唐永建,等. 物理掺杂用纳米Fe粉的制备与结构表征[J]. 强激光与粒子束,2008,20(2):244-246.WU Dong, WEI Jianjun, TANG Yongjian, et al. Preparation and characterization of Fe nanoparticles for physical doping[J]. High Power Laser and Particle Beams, 2008, 20(2): 244-246(in Chinese).
    [3]
    王志,袁章福,郭占成. 金属钛生产工艺研究进展[J]. 过程工程学报,2004,4(1):90-95.WANG Zhi, YUAN Zhangfu, GUO Zhancheng. Research progress of production of metallic titanium[J]. The Chinese Journal of Process Engineering, 2004, 4(1): 90-95(in Chinese).
    [4]
    PARK I, ABIKO T, OKABE T H. Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR)[J]. Journal of Physics and Chemistry of Solids, 2005, 66: 410-413.
    [5]
    OKABE T H, ODA T, MITSUDA Y. Titanium powder production by preform reduction process (PRP)[J]. Journal of Alloys and Compounds, 2004, 364(1-2): 156-163.
    [6]
    ATTAR A, HALALI M, SOBHHANI M, et al. Synthesis of titanium nano-particles via chemical vapor condensation processing[J]. Journal of Alloys and Compounds, 2011, 509: 5825-5828.
    [7]
    AMARCHAND S, RAMA MOHAN T R, RAMAKRISHNAN P. A novel chemical solution technique for the preparation of nano size titanium powders from titanium dioxide[J]. Advanced Powder Technology, 2000, 11(4): 415-422.
    [8]
    PRASAD K, JHA A K, KULKARNI A R. Lactobacillus assisted synthesis of titanium nanoparticles[J]. Nanoscale Res Lett, 2007, 2(5): 248-250.
    [9]
    楚广,熊志群,刘伟,等. 自悬浮定向流法制备纳米Cu粉的微结构和性能表征[J]. 中国有色金属学报,2007,17(4):623-628.CHU Guang, XIONG Zhiqun, LIU Wei, et al. Microstructure and properties of nano-copper powders prepared by flow-levitation method[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(4): 623-628(in Chinese).
    [10]
    段涛,吴栋,唐永建. 自悬浮定向流法制备纳米Fe微粒的粒度控制[J]. 原子能科学技术,2009,43(7):636-639.DUAN Tao, WU Dong, TANG Yongjian. Granularity control in preparation process of nanosized Fe particles by flow-levitation method[J]. Atomic Energy Science and Technology, 2009, 43(7): 636-639(in Chinese).
    [11]
    韦建军,李超阳,唐永建,等. 自悬浮定向流法制备纳米铜微粒及其结构表征[J]. 强激光与粒子束,2003,15(4):359-362.WEI Jianjun, LI Chaoyang, TANG Yongjian, et al. Preparation and structure of nanocopper particles by flow-levitation method[J]. High Power Laser and Particle Beams, 2003, 15(4): 359-362(in Chinese).
    [12]
    WU Hongchun, CHANG Richeng, HSIAO H. Research of minimum ignition energy for nano titanium powder and nano-iron powder[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1): 21-24.
    [13]
    LI Guisheng, JIMMY C Y, ZHANG Dieqing, et al. A mesoporous TiO2-xNx photocatalyst prepared by sonication pretreatment and in situ pyrolysis[J]. Separation and Purification Technology, 2009, 67(2): 152-157.
    [14]
    LI Hexing, LI Jingxia, HUO Yuning. Highly active TiO2-xNx photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions[J]. J Phys Chem B, 2006, 110: 1559-1565.
    [15]
    JIMMY C Y, YU Jiaguo, ZHAO Jincai. Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment[J]. Applied Catalysis B: Environmental, 2002, 36(1): 31-43.
  • Related Articles

    [1]CHEN Yang, CHEN Zhilin, YANG Yang, QU Jinhui, CHENG Shenghan, LI Yu. Effect of Depth Profile on Ar(Kα) Intensity of β-ray Induced X-ray Spectroscopy Spectrum in Tritium Measurement[J]. Atomic Energy Science and Technology, 2021, 55(12): 2368-2373. DOI: 10.7538/yzk.2020.youxian.0839
    [2]LIU Lei, WANG Tao, HE Zhi-bing, ZHANG Ling, YI Yong, DU Kai. Effect of Hydrogen Flow on Structure and Properties of Diamond Like Carbon Films[J]. Atomic Energy Science and Technology, 2016, 50(9): 1664-1672. DOI: 10.7538/yzk.2016.50.09.1664
    [3]SONG Yan, ZHOU Ming, SONG Gu-zhou, MA Ji-ming, DUAN Bao-jun, HAN Chang-cai, YAO Zhi-ming. Application of X-ray CCD Camera in X-ray Spot Diagnosis of Rod-pinch Diode[J]. Atomic Energy Science and Technology, 2015, 49(4): 759-764. DOI: 10.7538/yzk.2015.49.04.0759
    [4]MA Ge, HEI Dong-wei, ZHOU Hai-sheng, LUO Jian-hui, SUN Feng-rong. Study on X-ray Spectra Construction Method With Complex Energy Distribution[J]. Atomic Energy Science and Technology, 2014, 48(7): 1281-1285. DOI: 10.7538/yzk.2014.48.07.1281
    [5]QUAN Lin, ZHENG Wei-bo, TU Jing, SU Chun-lei, LI Jun-li, MIAO Liang-liang, WANG Chun-yi. Spectra Measurement for Fast Pulsed Hard X-ray[J]. Atomic Energy Science and Technology, 2009, 43(7): 658-662. DOI: 10.7538/yzk.2009.43.07.0658
    [6]OUYANG Xiao-ping, LIU Lin-yue, HEI Dong-wei, WANG Bao-hui. Mass Thickness Measurement of 235U Fission Target on Beryllium Substrate by Using Characteristic Fluorescent X-ray Absorption Spectroscopy[J]. Atomic Energy Science and Technology, 2008, 42(11): 997-1000. DOI: 10.7538/yzk.2008.42.11.0997
    [7]LAI Xin-chun, FU Xiao-guo, LI Gan, ZHONG Yong-qiang (National Key Laboratory of Surface Physics and Chemistry, P.O. Box 718-35, Mianyang 621907, China). Angle Resolved X-Ray Photoelectron Spectra Study on Surface State of Uranium[J]. Atomic Energy Science and Technology, 2005, 39(S1): 136-136. DOI: 10.7538/yzk.2005.39.S1.0136
    [8]MOU Fang ming, TU Bing, YAO Bing, LIU Jin hua, LONG Xing gui (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China). Analysis of Ti/Mo Film by X-ray Photoelectron Spectroscopy[J]. Atomic Energy Science and Technology, 2002, 36(Z1): 384-384. DOI: 10.7538/yzk.2002.36.z1.0384
    [9]FU Xiao guo, WANG Xiao lin, YU Yong, ZHAO Zheng ping (China Academy of Engineering Physics, P.O.Box 919 71, Mianyang 621900, China). Research on the Surface Chemical Behavior of Uranium Metal in Hydrogen Atmosphere by XPS[J]. Atomic Energy Science and Technology, 2001, 35(3): 207-207. DOI: 10.7538/yzk.2001.35.03.0207
    [10]LI JIMIN;ZHANG GUIQIN;SHU BEIGUI Institute of Atomic Energy, P. O. Box 275, Beijing. APPLICATION OF THE FUNDAMENTAL-PARAMETERS METHOD IN X-RAY FLUORESCENCE ANALYSIS[J]. Atomic Energy Science and Technology, 1989, 23(1): 15-15. DOI: 10.7538/yzk.1989.23.01.0015

Catalog

    Article views (710) PDF downloads (1090) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return