WEI Ping-gang, GUO Hui-ping, ZHANG Wei-wei, YANG Jie. Comparison for Specific Absorbed Fractions Based on European or North American Mathematical Phantoms[J]. Atomic Energy Science and Technology, 2010, 44(增刊): 608-611. DOI: 10.7538/yzk.2010.44.suppl.0608
Citation: WEI Ping-gang, GUO Hui-ping, ZHANG Wei-wei, YANG Jie. Comparison for Specific Absorbed Fractions Based on European or North American Mathematical Phantoms[J]. Atomic Energy Science and Technology, 2010, 44(增刊): 608-611. DOI: 10.7538/yzk.2010.44.suppl.0608

Comparison for Specific Absorbed Fractions Based on European or North American Mathematical Phantoms

More Information
  • Received Date: December 31, 1899
  • Revised Date: December 31, 1899
  • Specific absorbed fractions of target organs were calculated by MCNP4C, source organs were lungs which were divided into right lungs and left lungs.The comparison results for various adult male models, various ages models and gender models show that children’s are higher than adult’s, and female’s are higher than male’s about specific absorbed fractions.When target organs and source organs are same, specific absorbed fractions decline from 0.01 to 0.05 MeV;on the contrary, the specific absorbed fractions increase from 0.01 to 0.05 MeV.From 0.05 to 4 MeV, various organs incline to a constant value.
  • [1]
    CRISTY M, ECKERMAN K F.Specific absorbed fractions of energy at various ages from internal photon sources, ORNL/TM-8381[R]. USA: [s.n.], 1987.
    [2]
    EUN Y H, WESLEY E B, KEITH F E. Revisions to the ORNL series of adult and pediatric computational phantoms for use with the MIRD schema[J]. Health Phys, 2006, 90: 337-356.
    [3]
    BRIESMEISTER J F. MCNP—A general Monte- Carlo N-particle transport code, Version 4C [R]. USA: Los Alamos National Laboratory, 2000.
  • Related Articles

    [1]XU Jiayuan, ZHAO Quanbin, SUN Jianfeng, LIU Xiuting, ZHANG Dalin, ZHUO Wenbin. Study on Cold End Characteristic of SCO2 Brayton Cycle in Small Fluoride-salt-cooled High-temperature Reactor[J]. Atomic Energy Science and Technology, 2023, 57(9): 1720-1730. DOI: 10.7538/yzk.2023.youxian.0260
    [2]LUO Tianjun, XUE Yun, ZHOU Yu, MA Fuqiu, ZHAO Qiang. Study on Dynamic Simulation Model of Continuous Dissolution Process of Spent Fuel[J]. Atomic Energy Science and Technology, 2023, 57(1): 34-46. DOI: 10.7538/yzk.2022.youxian.0002
    [3]MING Yang, YI Jingwei, FANG Huawei, LIU Kai, ZHAO Fulong, TAN Sichao, TIAN Ruifeng. Analysis of Operating Characteristic of Direct Brayton Cycle Gas-cooled Reactor System[J]. Atomic Energy Science and Technology, 2020, 54(7): 1168-1175. DOI: 10.7538/yzk.2020.youxian.0013
    [4]GUO Kailun, WANG Chenglong, QIU Suizheng, SU Guanghui, TIAN Wenxi. Analysis on Thermoelectric Conversion Characteristic of Brayton Cycle in Megawatt-class Nuclear Electric Propulsion System[J]. Atomic Energy Science and Technology, 2019, 53(1): 16-23. DOI: 10.7538/yzk.2018.youxian.0354
    [5]LEI Jie-hong, GU Yu-qiu. Microscopic Simulation on Dynamic Failure Process of Single Crystal Copper under Shock Wave Loading Using Molecular Dynamics[J]. Atomic Energy Science and Technology, 2016, 50(5): 769-773. DOI: 10.7538/yzk.2016.50.05.0769
    [6]CHEN Yong-wei, FU Jing-qiang, QIU He-wen, ZHANG Li-guo, YOU Dai-lun. Improvement and Optimization of Master/Bypass Valve Switching Process for Steam Generator Level Control of Nuclear Power Plant[J]. Atomic Energy Science and Technology, 2015, 49(3): 523-528. DOI: 10.7538/yzk.2015.49.03.0523
    [7]LIU Dan, SUN Jun, XU Xiao-lin, SUN Yu-liang. Simulation and Analysis of Start-up Process of High Temperature Gas-cooled Reactor[J]. Atomic Energy Science and Technology, 2014, 48(增刊1): 594-598. DOI: 10.7538/yzk.2014.48.S0.0594
    [8]ZENG Sheng, TAN Kai-xuan, SANG Xiao, SHI Wen-ge. Numerical Simulation on Multi-field and Multi-process Coupling Dynamics of In-situ Leaching of Uranium[J]. Atomic Energy Science and Technology, 2011, 45(4): 500-505. DOI: 10.7538/yzk.2011.45.04.0500
    [9]QIN Ben-ke, BO Han-liang, ZHENG Wen-xiang, WANG Da-zhong. Study on StepDown Dynamic Process of Hydraulic Cylinder for Control Rod Hydraulic Drive Mechanism[J]. Atomic Energy Science and Technology, 2009, 43(4): 1-349. DOI: 10.7538/yzk.2009.43.04.0345
    [10]ZHOU Gang, ZHANG Da-fa, PENG Wei. Dynamic Process Identification for Steam Generator Based on Wavelet Neural Network[J]. Atomic Energy Science and Technology, 2006, 40(增刊): 1-4. DOI: 10.7538/yzk.2006.40.suppl.0001

Catalog

    Article views (592) PDF downloads (1088) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return